Design and Analysis of ZigBee (802.15.4) Based Data Loggers for Wireless Applications
Dr. Ana Martins*!, Jodo Silva? & Ricardo Almeida3

1(Assistant Professor, Department of Mechanical Engineering), University of Porto, Porto, Portugal
2(PhD Scholar, Department of Electrical Engineering), University of Porto, Porto, Portugal
3(Associate Professor, Department of Materials Science), University of Porto, Porto, Portugal

ABSTRACT

This dissertation is to produce data logger for remote system. It consists of a temperature sensor for constantly
monitoring temperature and Zigbee module for wireless data transfer at short distances. The measured
temperature parameter will be sent to microcontroller system. And with the help of Zighee module temperature
is sent to computer from remote area on digital displays. In recent time is sent with the help of inbuilt RTC
which ARM7 (LPC2148) microcontroller system has got. There will also provision for setting of RTC time if
user required in any case and it is done with the help of remote computer. When microcontroller circuit power
up then user is ask to set RTC time after this data transfer take place continuously which appears on computer
via Zigbee module connected to computer.

KEYWORDS: Zighee, microcontroller, monitoring Temp.

l. INTRODUCTION
The original model for this system consists of standalone data logger. As the requests from users are getting
higher, the application of wireless communication as medium transmission rather than the use of wires. Other
than that, extra features or some kind of bonus will be add to this system which is capable to access to wireless
communication for alarming some events. Moreover, these systems which apply low power consumption are
easy to manage and install. It is based on wireless sensor networks.

Wireless Sensor Network consists of large numbers of sensor nodes. The nodes are equipped with sensor
devices that are used for a certain applications. For example, the sensor device is camera and it is used to
retrieve the environment data visually, microphone is used to detect the sound, thermometer and thermocouple
are used to detect the changes in temperature. Every sensor nodes are also equipped with wireless module in
order to communicate with each other. The communication between the nodes are performed by establishing the
routing topology in the system before the data can be transmit from the certain sensor node to the collection
point or host

Wireless sensor network (WSN) is an emerging technology and has great potential to be employed in critical
situations. Wireless sensor networks have been deployed in various monitoring applications such as industrial,
health, environmental, and security The Wireless Sensor Networks comprise of relatively inexpensive sensor
nodes capable of collecting, processing, storing and transferring information from one node to another. These
nodes are able to autonomously form a network through which sensor readings can be propagated [20].
Therefore, a standard is required that is capable of establishing the network between these nodes as well as
provide low cost and less power consumption. Fortunately, there is a standard called ZigBee that is capable of
accomplishing all these requirements.

ZigBee standard is developed by the ZigBee Alliance that defines the communication protocols for low-data-
rate and short-range wireless networking. ZigBee based wireless devices operate at 868 MHz, 915 MHz, and 2.4
GHz frequency bands. ZigBee is developed on the top of IEEE 802.15.4 standard . is designed for low-power
consumption and allows batteries to last up to years using primary cells without any chargers (low cost and easy
installation). ZigBee has a wide application area such as home networking, industrial networking, system
monitoring and many more having different profiles specified for each field.

1. MATERIALS AND METHODS
ADC working

Most real world data is in analog form. Whether it be temperature, pressure, voltage, etc, their variation is
always analog in nature..so we have to convert this analog data into digital format so that computer or
microcontroller can understand it and process on it. Sensor gives analog data in form of variation in current and
voltage, ADC read this variation and process a digital data according to analog input and send to microcontroller
to process it further.

Terms used in ADC

Resolution — The resolution of the converter indicates the number of discrete values it can produce over the
range of analog values. A computer is a digital machine that stores a number in binary. If you are storing a
digital 2-bit number you can store 4 different values: 00, 01, 10, or 11. Now, you can say ADC have 2-bit
resolution and you have a device which converts an analog voltage between 0 and 10 volts into a 2-bit digital
value for storage in a computer.

This device will give digital values as follows

Voltage 2-Bit Digital Representation
0to25 00
25105 01
5t07.5 10
7.510 10 11
Table 1.0

Note:

» Higher the resolution smaller the step size

» Smaller the step size better accuracy
Step size — small amount of change in analog input that can understand
for example 8-bit ADC,

step size=Vref/2"8-1 = Vref/255

Vref — used to detect step size
Conversion —
Dout=Vinput/(step size)
Dout — decimal output digital data
Vinput — analog input voltage
For example — for 8 bit ADC, Vref = 2.56 V, calculate digital output for 1.7 V input.
step size=(2.56 V)/256=10 mV
Dout=(1.7 V)/(10 mV)=170=10101010

Method to inbuilt ADC

In this tutorial we will go through LPC2148 adc programming. Analog to Digital Conversion(i.e. ADC) , as the
name suggests , is all about converting a given analog signal into its digital form or say a digital value. So, what
does this mean? Well, basically its measuring the voltage of a given analog signal. The analog signal can be
differential, single-ended unipolar, etc. The converted digital value represents the measured voltage. This
conversion or measurement happens in presence of a fixed and accurate reference voltage. The analog signal is
compared to this reference voltage and then estimations are made to get the final measured value.

ADC on LPC214x

ADC on LPC214x is based on Successive Approximation (SAR) conversion technique.

Pins relating to ADC Module of LPC214x :

Pin Description

ADO.1 to AD0.4 Analog input pins.

(P0.28/29/30/25) and Note from Datasheet: “If ADC is used, signal levels on analog input pins

ADO0.6,ADO0.7 (P0.4/5) must not be above the level of VVdda at any time. Otherwise, A/D
converter readings will be invalid. If the A/D converter is not used in an
application then the pins associated with A/D inputs can be used as 5V
tolerant digital 1O pins.”

Vref This is the reference voltage pin. It must be connected to an accurate
reference voltage source.
Vdda,Vssa Vdda is Analog Power pin and Vssa is Ground pin used to power the
ADC module.
Table 2.0

Registers used for ADC programming in LPC214x
(For AD1 registers replace 0 with 1 wherever applicable)
1) ADOCR — A/D Control Register : This is the main control register for ADO

1. Bits[7 to 0] — SEL : This group of bits are used to select the pins(Channels) which will be used for

sampling and conversion. Bit ‘x’(in this group) is used to select pin A0.x in case of ADO.

2. Bits[15 to 8] — CLKDIV : These bits stores the value for CLKDIV which is used to generate the ADC
clock. Peripheral clock i.e. PCLK is divided by CLKDIV+1 to get the ADC clock

3. Bit16 — BURST : Set this to 1 for doing repeated conversions. Set this bit to 0 for software controlled

conversions , which take 11 clocks to finish.

4. Bits[19 to 17] — CLKS : These bits are used to select the number of clocks used for conversion in burst
mode along with number of bits of accuracy of the result in RESULT bits of ADDR.

Value | clocks / bits

000 | 11 clocks /10 bits
001 | 10 clock /9 bits
010 | 9clock/ 8 bits
011 | 8clock/ 7 bits
100 | 7 clock/ 6 bits
101 6 clock /5 bits
110 5clock/ 4 bits
111 4 clock/ 3 bits

Table 3.0

5. Bit21 - PDN : Setitto 1 for powering up the ADC and making it operational. Set it to O for bringing it

in power down mode.

6. Bits[26 to 24] — START : These bits are used to control the start of ADC conversion when BURST (bit
16) is set to 0. Below is the table as given in datasheet :

Value | Significance
000 | No start (this value is to be used when clearing PDN to 0)
001 | Start the conversion

010 | Start conversion when the edge selected by bit 27 occurs on P0.16/EINTO/MATO0.2/CAPO0.2
pin

011 | Similar to above — for MATO.0 pin
100 | Similar to above — for MATO0.1 pin
101 | Similar to above — for MATO0.3 pin
110 | Similar to above — for MAT1.0 pin
111 | Similar to above — for MAT1.1 pin

Table 4.0

7. Bit 27 — EDGE : Set this bit to 1 to start the conversion on falling edge of the selected CAP/MAT
signal and set this bit to 0 to start the conversion on rising edge of the selected signal. (Note: This bit is
of used only in the case when the START contains a value between 010 to 111 as shown above.)

8. Other bits are reserved.

ADOGDR - A/D Global Data Register : This is the global data register for the corresponding ADC module. It
contains the ADC’s DONE bit and the result of the most recent A/D conversion.

1. Setting up and configuring ADC Module for software controlled mode :

First we will define some values which will help us setup the ADOCR register to configure the ADO block
before we can use it.

#define CLKDIV (15-1) // 4AMhz ADC clock (ADC_CLOCK=PCLK/CLKDIV) where "CLKDIV-1" is actually
used , in our case PCLK=60mhz

#define BURST_MODE_OFF (0<<16) // 1 for on and 0 for off

#define PowerUP (1<<21) //setting it to O will power it down

#define START_NOW ((0<<26)|(0<<25)|(1<<24)) //001 for starting the conversion immediately

#define ADC_DONE (1<<31)

Here we define CLKDIV which is divided by PCLK to get the ADC clock <=4Mhz. In our case we will be
using a PCLK of 60Mhz hence we divide 60Mhz by 15 to get 4Mhz. But note that the ADC module actually
needs a value of (CLKDIV-1). This is because it adds "+1" to the value internally (in case if user uses a
CLKDIV of 0 it will be still valid). For our purposes CLKDIV is a 'zero-indexed' value hence we must subtract
it by 1 before using it. In our case we need to supply a value of 14 i.e. (15-1) to ADOCR.

BURST_MODE_OFF(bit 16) , PowerUP(bit 21) and ADC_DONE(bit 31) are defined as required. CLKS_10bit
has been defined for 10 bit resolution - you can change the bit combination as per your needs. Finally
START_NOW is defined as "001" which is for starting the conversion 'now'.

Next we define ADOCR_setup which contains basic configuration for setting up the ADC Module. We feed
CLKDIV , BURST_MODE_OFF and PowerUP into ADOCR_setup as follows

unsigned long ADOCR_setup = (CLKDIV<<8) | BURST_MODE_OFF | PowerUP;

Now we assigh ADOCR_setup to ADOCR along with channel selection information to select channels as
required. Finally we assign(by ORing) START _NOW to ADOCR to start the conversion process as shown :

ADOCR = ADOCR_setup | SEL_ADO6;

ADOCR |= START_NOW,;

Note that ADOCR can be assigned/setup in a single step. But | am doing it in three steps to keep things simpler.
2. Setting up and configuring ADC Module for Burst mode :

Configuring ADC Module is similar to what was done in software controlled mode except here we use the
CLKS bits and don’t use the START bits in ADOCR. ADC_DONE is also not applicable since we are using an
ISR which gets triggered when a conversion completes on any of the enabled channels.

#define CLKDIV (15-1) // 4Mhz ADC clock (ADC_CLOCK=PCLK/CLKDIV) where

"CLKDIV-1"is actually used , in our case PCLK=60mhz

#define BURST_MODE_ON (1<<16) // 1 for on and 0 for off
#define CLKS_10bit ((0<<19)|(0<<18)|(0<<17)) //10 bit resolution
#define PowerUP (1<<21) //setting it to O will power it down

3. Fetching the conversion result in software controlled mode :

In software controlled mode we continuously monitor bit 31 in the corresponding channel data register ADDR.
If bit 31 changes to 1 from O, it means that current conversion has been completed and the result is ready. For
example , if we have used channel 6 of ADO then we monitor for changes in bit 31 as follows :

while((ADODR6 & ADC_DONE) == 0); //this loop will terminate when bit 31 of ADODR6
4. Fetching the conversion result in Burst mode :

In Burst mode we use an ISR which triggers at the completion of a conversion in any one of the channel. Now ,
we just need to find the Channel for which the conversion was done. For this we fetch the channel number from
ADOGDR which also stores the conversion result. Bits 24 to 26 in ADOGDR contain the channel number. Hence
, We shift it 24 places and use a 3bit mask value of OxF as shown below :

unsigned long ADOGDR_Read = ADOGDR;
int channel = (ADOGDR_Read>>24) & OxF; //[Extract Channel Number

After knowing the Channel number, we have 2 options to fetch the conversion result from. Either we can fetch it
from ADOGDR or from ADODRX of the corresponding channel. In the examples covered in ‘examples section’
of this tutorial | have used ADOGDR for extracting the conversion result as follows :

int currentResult = (ADOGDR_Read>>6) & 0x3FF; //[Extract Conversion Result

Introduction of inbuilt UART

Here is a quick recap of UART basics : Uart uses TxD(Transmit) Pin for sending Data and RxD(Receive) Pin to
get data. UART sends & receives data in form of chunks or packets. These chunks or packets are also referred to
as ‘transmission characters’. The structure of a UART data packet is as shown below :

ASCII character “A” (8-bit binary 0100 0001)

1 1 1 1 |

| | | | |

1 1 1 1 |

1 1 1 1 |

1 1 1 1 |

| | | | Start | Mark

Sppce Stopl o 1 Jojo ol ol of 1| g !
Bit 1 1 1 1 |

]]]] |

1 1 1 1 |

| | | 1 1 1 1 1 | | | |

‘[" D7’ ' ' : : DO I '

Goes out last Goes out firgt

The transmission begins with a
start bit followed by DO, the
LSB, then the rest of the bits

The 0 (low) is
referred to as space

‘When there is no
transfer, the signal

until MSB (D7), and finally,
the one stop bit indicating the
end of the character

is 1 (high), which is
referred to as mark

Figure 1.0

Now , Lets start with the main Tutorial. LPC214x has 2 UART blocks which are UARTO and UARTL1. For
UARTO the TxD pin is P0.0 and RxD pin is P0.1 and similarly for UART 1 the TxD pin is P0.8 and RxD pin is
P0.9 as shown in the table below :

Pins: | TxD RxD
UARTO | P0.0 | PO.1
UART1 | P0.8 | P0.9

Table 5.0

Registers used for UART programming in LPC214x:

Before we can use these pins to transfer data , first we need to configure and initialize the UART block in our
LPC214x microcontroller. But before doing that, lets go through some of the important registers: (for UART1
registers replace 0 with 1)

Data Related Registers :

1) UORBR - Receiver Buffer Register (READ ONLY!): This register contains the top most byte(8-bit data
chunk) in the Rx FIFO i.e the oldest received data in FIFO. To properly read data from UORBR , the
DLAB(Divisor Latch Access) bit in UOLCR register must be first set to 0.

2) UOTHR — Transmit Holding Register (WRITE ONLY!): UOTHR contains the top most byte in Tx FIFO and
in this case its the newest(latest) transmitted data. As in the case with UORBR , we must set DLAB=0 to access
UOTHR for write operation.

Baud Rate Setup related registers :

1) UODLL and UODLM - Divisor Latch registers: Both of them hold 8-bit values. These register together form a
16-bit divisor value which is used in baud rate generation which we will see in later section. UODLM holds the
upper 8-bits and UODLL holds the lower 8-bits and the formation is “[UODLM:UODLL]. Since these form a
divisor value and division by zero is invalid, the starting value for UODLL is 0x01 (and not 0x00) i.e the starting
value in combined formation is “[0x00:0x01]” i.e 0x0001. Please keep this in mind while doing baud-rate
calculations. In order to access and use these registers properly, DLAB bit in UOLCR must be first set to 1.

2) UOFDR — Fractional Divider Register : This register is used to set the prescale value for baud rate generation.
The input clock is the peripheral clock and output is the desired clock defined by this register. This register
actually holds to different 4-bit values (a divisor and a multiplier) for prescaling which are:

1. Bit[3to 0] - DIVADDVAL : This is the prescale divisor value. If this value if 0 then fractional baud
rate generator wont have any effect on Uart Baud rate.

2. Bit[7to 4] —- MULVAL : This is prescale multiplier value. Even if fractional baud rate generator is not
used the value in this register must be more than or equal to 1 else UARTO will not operate properly.

3. Other Bits reserved.

Remark from Usermanual : “If the fractional divider is active (DIVADDVAL > 0) and DLM = 0, the value of
the DLL register must be 2 or greater!”

UART Baud Rate Generation:

In most cases the actual baudrate will drift a little above or below the desired baud and also, as the desired
baudrate increases this drift or error will also increase — this is because of the equation itself and the limitations
on MULVAL , DIVADDVAL! For e.g. if the desired baud rate is 9600 and you get a baud like 9590 , 9610 ,
9685 , 9615 , etc.. then in almost all cases it will work as required. In short , a small amount of error in actual
baudrate is generally tolerable in most systems.

The master formula for calculating baud rate is given as :
PCLK in Hertz

BaudRate = — ¢ (256xDLM + DLL) x (1 + DIVADDVAL/MULVAL)
which can be further simplified to :
PCLK in Hertz X MULVAL
BaudRate =

16 x (256xDLM + DLL) MULVAL + DIVADDVAL

with following conditions strictly applied :

0 < MULVAL <= 15
0 <= DIVADDVAL <= 15
If DIVADDVAL >0 & DLM =0 then, DLL >=2

As it can been seen this formula has 2 prominent parts which are : A Base value and a Fractional Multiplier i.e:
BaudRate = [Base] x [Fraction(i.e. Prescale)]. This Fractional Multiplier can be used to scale down or keep
the base value as it is .. hence its very useful for fine-tuning and getting the baudrate as accurate as possible.
Where PCLK is the Peripheral Clock value in Hz , UODLM and UODLL are the divisor registers which we saw
earlier and finally DIVADDVAL and MULVAL are part of the Fractional baudrate generator register.

1. RESULTS AND CONCLUSION

This thesis is developed for remote monitoring of system with respect of time. Therefore user does not need
go to remote area to know the temperature of device .The device developed can work efficiently up to a
30m distance depending upon surrounding environmental and 100m for open air, which can be used as a
modern technique as per requirement .

Perinola Journal , ISSN: 1342-0267 Volumels, Issue 9, 2025

0 5 ® o +0 i

0 10 2 30 a0 50 60 70 80 90 100

Figure 6.0
Limitations and difficulties
» Received data in computer cannot be stored for future analyses.
» Difficulties encountered while interfacing with the Xbee module and programming of ARM?7 .

Future scope of work
» To control remote system
> If system is more than one then it can form WLAN for providing information regarding data like
temperature

Some types of research for Xbee are used are:
Cosmic ray astrophysics

Gamma ray and X -ray astrophysics
Optical and ultra - violet astrophysics
Infrared/sub millimeter

Atmospheric science

VVYVYVYYV

<

REFERENCES
Mahesh G and Mrs. Y. Syamala, “Weather Data Logger Using ARM Processor”, International Journal
of Advanced Research in Computer Science and Software Engineering,Vol 3, pp. 2277 128X, JNTU,
INDIA, 2013

=

2. Md. Moyeed Abrar and Rajendra R. Patil, “Multipoint Temperature Data Logger and Display on PC
through Zigbee using PSoC”, International Journal of Advanced Research in Computer and
Communication Engineering, Vol. 2, pp. 2278-1021, AIET, Gulbarga, India, 2013

3. H.Vijaya Laxmi and M.Narender, “Communication b/w Mobile-Robots’and PC controller Based On
ZigBee Network”, International Journal of Engineering Research and Applications,Vol. 1, pp. 2248-
9622, SREC Warangal, AP, India

4. Arun Kumar, “A Zigbee Based Wireless Datalogging System” International Journal of Scientific &
Engineering Research Vol. 3, pp. 2229-5518, India, 2012

5. P.V. Mane-Deshmukh, B.P. Ladgaonkar, S.C. Pathan and S. S. Shaikh, “ Microcontroller Pic
18f4550 Based Wireless Sensor Node to Monitor Industrial Environmental Parameters”, International
Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3, pp. 2277 128X,
Akluj, India, 2013

6. Nashtara Islam, Robert Watson and Philip Moore,”Z8 Encore Microcontroller Based Data Logging
System”,AUJT, Loughborough University Leicestershire, United Kingdom, 2006

https://perinolajournal.com DOI: 10.2641/Perinola.15010 Page No:91

Perinola Journal , ISSN: 1342-0267 Volumels, Issue 9, 2025

7. Howitt | and Gutierrez J.A, “IEEE 802.15.4 Low Rate —Wireless Personal Area Network Coexistence
Issues”, IEEE Conference of Wireless Communications and Networking, Vol. 3, pp. 1481-1486, New
Orleans, LA, USA, 2003.

8. LiJand Liu Q, “Application and Research of ZigBee Tehnology in the Miner’s Lamp Monitoring”,
IEEE International Conference on Future Information Technology and Management Engineering, Vol.
1, pp. 317-320, Changzhou, 2010.

9. Lbpez M, Gémez J.M, Sabater J and Herms A, “IEEE 802.15.4 based Wireless monitoring of pH and
temperature in a fish farm”, 15th IEEE Mediterranean Electrochemical Conference, pp. 575-580,
Valletta, 2010.

10. Pengfei L, Jiakun L and Junfeng J, “Wireless temperature monitoring system Based on the ZigBee
technology”, 2nd IEEE International Conference on Computer Engineering and Technology, Vol. 1,
pp. 160-163, Chengdu, 2010

11. Singh R, Mishra S and Joshi P, “Pressure Monitoring in Wireless Sensor Network Using Zigbee
Transceiver Module”, 2nd IEEE International Conference on Computer & Communication
Technology, pp. 225-229, Allahabad, 2011.

https://perinolajournal.com DOI: 10.2641/Perinola.15010 Page No0:92

