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ABSTRACT 
Internet users are regularly using Online social networks (OSNs). However, spam originating from various 

sources causes damage to less security-savvy users. Earlier counteraction withstand OSN spam from different 

angles. Due to the wide range of spam, there is rarely any  current procedure  that can independently detect the 

majority of OSN  spam. In this paper, we empirically analyze the textual  pattern  of a large collection of OSN 

spam. An inspiring finding is that  the majority (e.g., 76.4% in 2015) of the collected spam is generated with 

underlying templates. Based on the analysis, we propose tangram, an OSN spam filtering system that performs 

online inspection on the stream of user-generated messages. Tangram extracts the templates of spam detected by 

existing methods and then matching messages against the templates toward the accurate and the fast spam 

detection. It automatically divides the OSN spam into segments and uses the segments to construct templates to 

filter future spam. Results on Twitter and Facebook data sets show that tangram is accurate and can rapidly 

generate templates to throttle newly emerged  campaigns.  Furthermore, we analyze  the  behavior  of detected 

OSN spammers. We find a series of spammer properties—such as spamming accounts are created in bursts and 

a single active organization orchestrates more spam than all other spammers combined—that promise more 

widespread spam counteraction 
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I. INTRODUCTION 
OSN became popular spammers started exploiting  online social networks(OSNs). Researchers propose 

combating OSN spam from different angles, including mining the textual content, studying the redirection 

chains of embedded URLs, as well as classifying the URL landing pages. Despite the development of 

countermeasures, spammers find their way to adapt and stick. Back to 2011, on Twitter, one of the most popular 

OSNs nowadays, more than 5% of collected tweets are spam, which has slipped through all the deployed 

defense mechanism. While up to 2014, 5% of the entire Twitter’s user base  are spam bots. Why could this still 

happen given the efforts to build various spam mitigation systems? We observe that a primary reason is the 

absence of clear understandings of what techniques the spammers are using to construct OSN spam and how the 

techniques evolve. Such missing piece of fundamental information is critical for exploring effective designs to 

throttle OSN spam. Toward uncovering OSN spam generation techniques, we conduct a large-scale, consecutive 

measurement study. We find that the majority of spam is generated with underlying templates, which is 

consistent with prior email spam research . Templates are valuable for spammers, because they let spammers 

control and customize the semantic meaning of generated messages to boost the conversion rate. OSN 

spammers have evolved to use more sophisticated templates that break the assumptions in prior email spam 

template generation research, making them ineffective for OSN spam. In particular, our measurement results 

reveal three challenges that render template-based OSN spam hard to throttle.  

 

Absence of Invariant Substring in Template: Prior spam template generation research made a crucial 

assumption that an invariant substring is hard-coded in a template, so that every instantiation of the template 

contains such string. Unfortunately, an OSN spam template does not always contain any invariant substring. 

 

 Prevalence of   Noise: Spammers extensively add semantically unrelated noise words into spam messages. The 

presence of noise diversifies spam, and increases the difficulty to identify semantically meaningful text 

segments.   

 

Spam Heterogeneity: Spam instantiating different templates mixes with spam without any underlying 

templates. It is hard to obtain a training set with a single template in an online detection scenario. In our project, 

we propose Tangram system to combat OSN spam through effective spam-template generation. Tangram stands 

out among existing spam countermeasures because of three properties. First, Tangram directly tackles spam 

whereas many existing methods detect spammers instead of spam. Such methods are based on account activity 

and need long observation periods for the account features to accumulate. Second, some other detection 

approaches are based on URL analysis, which inherently cannot detect spam without URLs. Researchers have 
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revealed significant amount of such spam. The few existing methods that detect spam with or without URLs in 

real-time suffer from high false positive rates. In contrast, Tangram is the first accurate online OSN spam 

detection system that detects spam with or without URLs. Third, what is more unique to Tangram is that it 

directly hits OSN spam’s vital point—template-based spam that counts the most. Tangram extracts templates of 

spam detected by existing methods and then matches messages against the templates toward accurate and fast 

spam detection. Beyond spam detection, we further investigate the detected spammers to infer their strategy.  

In summary, Tangram is highly accurate because of the following sweet spots. 

 

 Embrace the Absence of Invariant Substring: We identify frequently appearing segments within messages 

and then locate equivalent segments among messages. Such segments are later assembled into spam templates 

for matching future spam. 

 

 Mitigate the Prevalence of   Noise: We cast a sequence-labeling task to label each word in a given message as 

either “noise” or “non-noise”. Only “non-noise” words yield templates.  

 

Break Spam Heterogeneity: We pre-cluster spam and perform template generation within individual partitions. 

We also discard outlier messages in the partition. 

 

Build a Double Defense: We mitigate spam without underlying templates using a supplementary module that 

detects spam with excessive semantically unrelated noise words.  

 

In addition, we can provide Tangram with multiple heterogeneous detection modules in practice. 

 

II. MATERIALS AND METHODS 
 

1. Existing system 

Tangram builds template-based spam detection on top of existing detection methods toward higher accuracy and 

speed. It generates the underlying templates of spam detected by various existing methods. It then uses the 

templates to accurately, quickly match and detect spam. Figure 1 depicts the Tangram workflow. It takes a 

stream of raw messages as input, and classifies them as either spam or legitimate online. After the classification, 

spam is filtered, while legitimate messages pass through. Two components can classify messages: the template 

matching module and the auxiliary spam filter. The template matching module, along with the template 

generation technique, is our major contribution. The auxiliary spam filter, on the other hand, supplies training 

spam messages. It can be any deployed spam filter, e.g., a blacklist spam filter. In our paper, we propose 

Tangram system to combat OSN spam through effective spam-template generation. Tangram stands out among 

existing spam countermeasures. In contrast, Tangram is the first accurate online OSN spam detection system 

that detects spam with or without URLs. Third, what is more unique to Tangram is that it directly hits OSN 

spam’s vital point—template-based spam that counts the most. Tangram extracts templates of spam detected by 

existing methods and then matches messages against the templates toward accurate and fast spam detection. 

Beyond spam detection, we further investigate the detected spammers to infer their strategy. 

 

 Liabilities: 

 No Privacy for Users. 

 Storing data is very difficult for users. 

  In the present social network application , are not having facility to share or view templates. 

 In the present social network application prevents spam for images and text.  

 

2. Proposed system 

We reuse the same parameters reported. The auxiliary spam filter is not an oracle. It may mistakenly report 

legitimate messages as spam, or miss to report spam messages. Note that in what follows we evaluate the 

detection accuracy of only the modules proposed, but not the accuracy of the auxiliary spam filter.  

 

As before mentioned, we focus on the accuracy of our proposed modules—template matching and noise 

detection. We first try to analytically capture how their accuracy varies with that of auxiliary filter. Let Ts and 

Tl represent the number of spam tweets and the number of legitimate tweets in the ground truth. 

 Benefits: 

 We can provide much safety for users. 

 Users can access account from anywhere. 

  In the proposed system social network application  are having facility to share or view templates. 

 In the proposed system social network application it does not prevents spam for images and text. 
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3. Tangram: template-based spam detection system 

we present Tangram, an accurate and fast template-based spam detection system. We first formulate the notions 

of template, template matching and template generation. Next, we detail the online Tangram system. 

 

System Design Overview: 
Tangram builds template-based spam detection on top of existing detection methods toward higher accuracy and 

speed. It generates the underlying templates of spam detected by various existing methods. It then uses the 

templates to accurately, quickly match and detect spam. It takes a stream of raw messages as input, and 

classifies them as either spam or legitimate online. After the classification, spam is filtered, while legit0imate 

messages pass through. Two components can classify messages: the template matching module and the auxiliary 

spam filter. The template matching module, along with the template generation technique, is our major 

contribution. The auxiliary spam filter, on the other hand, supplies training spam messages. It can be any 

deployed spam filter, e.g., a blacklist spam filter. Template Matching and Template Generation: We define a 

template to be a sequence of macros of two types, dictionary and noise .We represent a dictionary macro as a set 

of values separated by “|” and a noise macro as Thus, templates produced by Tangram are naturally encoded as 

regular expressions, specifically concatenations of clauses and Template matching matches a given message 

against the corresponding regular expression. A successful template match implies the tested message 

instantiates the template, and should be flagged as spam. We define template generation as the task of inferring 

the template’s regular expression representation from a set of observed spam instances. Initially the template 

matching module is not equipped with any template, so all messages will pass through. However, if a message is 

blocked by the auxiliary spam filter, it is treated as an instantiation of an unexpected template, and is saved in 

the spam buffer. Once the number of messages in the spam buffer exceeds a predefined window size threshold, 

the system invokes the template generation procedure, and deploys the newly generated templates in the 

template matching module. As spam categorization demonstrates, spam messages are with or without 

underlying templates. We first pre-process spam messages in the buffer into campaigns. Messages belonging to 

no campaign are not template-based or its same-template messages are not sufficient enough. We then feed only 

messages in campaigns to template generation. For the left spam tweets in the buffer, we wait for 10 times of 

window size until we evict them from the buffer. Whenever a newly generated template happens to be highly 

similar to an existing one, we will merge their regular expressions. The template generation first identifies the 

subset of spam messages sharing the same template. These messages are tokenized into sequences of words. 

After executing noise detection , we are left with spam content generated by dictionary macros. We divide every 

message into the same number of segments. Each segment, containing zero or more tokens, corresponds to one 

macro in the template. We then construct the macro by combining the segment’s unique strings across messages 

with the concatenation of the macros for all segments constitutes the complete template. Inferring the number of 

segments and which tokens belong to which segment are key challenges in template generation. 

 

1. We use the heuristic of preferring more compact templates (i.e., shorter regular expressions) that match all of 

the input spam messages without using wild cards. This heuristic follows the traditional approach of preferring 

simpler descriptions to more complex ones; our experiments validate its effectiveness. Furthermore, finding the 

shortest template for a set of messages is an NP-hard problem. We develop a practical approximation as follows. 
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Fig.1. Tangram framework: The template generation and matching overview 

 

4. Single campaign template generation 

For ease of presentation, we first introduce the approach to generate a single template given spam instantiating 

the same underlying template. It is the basis of Tangram. We expand the approach to generate templates on a 

mixture of spam instantiating multiple templates. A  strength of our approach is generating templates without  

any invariant substring. However, we do expect that some non-trivial subset of a campaign will share a common 

substring, because the dictionary macro may instantiate to the same textual content when multiple spam 

messages are generated. This property helps infer the correspondence of segments between messages.  

 

Since substrings shared by subsets of a campaign are crucial for template inference, a naive alternative is to 

break a campaign apart so that each part contains an invariant  substring, then reuse the existing template 

generation algorithm. Unfortunately, such a immature alternative cannot capture as much spam as our technique 

does. Using the sample campaign, if we break the campaign into two parts, the first two messages and the last 

three messages, the templates generated by the naïve alternative cannot capture the unobserved message starting 

with “RIP Celeb C”, whereas our technique can detect such case. 

 

We systematically exploit such substrings shared by subsets of a campaign in three steps, common super 

sequence computation, column concatenation, and regular expression representation. 

 

Common Super sequence Computation:  

The first step is to compute the messages’ common super sequence. Shortest common super sequence is an NP-

hard problem .We use an approximation algorithm named Majority-Merge because of its simplicity. It takes n 

sequences as input and initializes the super sequence, s, as an empty string. It iteratively chooses the majority of 

the leftmost tokens of the input sequences, denoted as a, and appends a  to  s. Meanwhile, the leftmost a  is  

deleted from the input sequences. It repeats this step until all sequences are empty and outputs s. For ease of 

understanding the  Majority-Merge algorithm. In step 1, both “Big” and “Celebrity” represent the majority of 

the leftmost tokens of the input tweets. We, however, assign a   with “Big” because its corresponding input 

tweet precedes the one that “Celebrity” corresponds to. (This rule applies also to subsequent steps .We first 

delete “Big” from messages prefixed with it (i.e., the first one and the third one). We then use the updated tweet 

set as the input of step 2. Again, step 2 finds two tokens, “Name” and “Celebrity”,  that dominate the majority of 

the leftmost tokens. We select “Name” as a according to the rule in step  

1. After six steps of similar operation, the (intermediate) output super sequence s becomes “Big Name A 

Celebrity B an. In the final output super sequence, each token is trivially a substring shared by some subsets of 

the campaign. Desirable substrings are i) shared by large subsets and ii) long.  
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We achieve goal i) by producing a shorter super sequence via the following two phases: matrix representation 

and matrix column reduction. 

 Matrix Representation: 
We build a matrix during the execution of Majority-Merge algorithm. The header row is the final super 

sequence output by the Majority-Merge algorithm. Each of the remaining rows represents one input sequence, 

that is, one spam tweet. If the ith sequence is picked in step j for extracting token a, the cell at row i, column j 

will be assigned the token a. (We also call the token a as column label.) Otherwise, the cell will be assigned an 

empty string. It corresponds to the first step of the Majority-Merge algorithm. Since the chosen token a  is 

“Big”, which leads the first and the third tweets, the first row and the third row are labeled with “Big”; 

Naturally, the concatenation of labels of each row is exactly the row’s corresponding input sequence. We denote 

this property as the super sequence property.  

 Matrix column reduction: 

 To produce a shorter super sequence, we need to merge columns that share the same label, while maintaining 

the super sequence property. 

After merging two cells from two columns, the new cell will be assigned the column label if either cell before 

merging has been assigned so. Take the two columns sharing “offensive”. After merging them, the first two new 

cells will be assigned ε because all corresponding cells are ε. On the other hand, each of the other three new 

cells will be assigned “offensive”, which is the column label of one corresponding cell before merging. These 

two columns are merged into one column containing “offensive”. Without loss of generality, we state the three 

sufficient conditions that determine whether column k can be merged into column j without affecting the super 

sequence property Note that the merging is directional, after which column j is kept while column k is deleted. 

Condition  

 column j and column k have identical label; Condition  

 in any row at least one column is ε; and Condition  

 if the cell at row i, column k is not, all cells in row i, between column j and column k must be Table V 

shows the column merging result. Noticeably, the repeated columns of “offensive content, look at this 

video” is gone after the merging, yielding a more compact matrix representation.  

 Column Concatenation:  

To achieve goal ii) for obtaining long substrings shared by subsets of campaigns, we further concatenate the 

matrix columns obtained from the previous step. Column concatenation also operates on a column pair, after 

which each cell becomes the concatenation of the two corresponding cells. Different from column merging, 

column concatenation does not require the target columns to share identical label. It only requires that the value 

of the corresponding, non-ε cells in the two columns has mapping. For example, the first two columns are 

concatenated because “Big” always maps to “Name but the fifth and the sixth columns in cannot be 

concatenated because “B” maps to two values, “an” and The effect of column concatenation is two-fold. First, it 

moves multiple tokens into one cell, revealing the true template by assembling tokens (words) into word 

phrases. For example the three separate columns “Big”, “Name”, and “A” become one celebrity name. Second, 

the cells on the same column after column concatenation may have different contents, like the first two columns 

.This maps to the dictionary macro case, where different cell contents are different instantiation of the dictionary 

macro.  

 Regular Expression Representation: 

Converts the matrix into a regular expression to represent the generated template. We initialize the regular 

expression representation to be an empty string, s. Then we iterate through each column. If all the cells in the 

column share an identical value, we append the value to s. Otherwise, we make a “|” clause by concatenating all 

the unique values with “|”, and append the clause to. The header row of gives an example of the generated 

regular expression representation. Finally, we add a and a to the head and the tail of s to respectively mark the 

beginning and the ending of a message.  

 

5. Multi campaign template generation: 

We now expand single campaign template generation to multi-campaign scenarios over spam instantiating 

different templates or even without underlying templates. We first separate the spam into distinct campaigns 

automatically and then individually invoke the single campaign template generation. 

We first use single-linkage clustering to group messages that share at least k consecutive identical tokens, k 

being a system parameter. The goal is to put semantically similar messages in the same cluster, while separating 

semantically different messages into different clusters. The transitive closure of these links forms our initial 

clustering. This clustering does not require every message pair in the cluster to share an invariant substring. We 

use a small training set of collected spam tweets to choose the value of k experimentally. The value of k is not 

sensitive to the training set size. For example, we test with size 10,000, 5,000 and 2,000 and obtain consistent 

results. With a training set of size 10,000, a loose threshold (e.g., k = 3) results in a big cluster containing 42% 

of the spam, while spam messages in this cluster have different semantic meanings like Lady Gaga, Apple 
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product and so on. A tight threshold (e.g., k >= 5) results in a large number of small clusters, where multiple 

clusters share the same semantic meaning. For example, 9 out of the 20 largest clusters in the experiment should 

be merged. In comparison, k = 4 produces the best result in our experiments. We suggest that k be empirically 

adjusted. Given a test dataset, one can first extract a subset of test tweets and run template generation over it 

with an initial k. If it results a large number of smaller clusters, we need to shrink k. Otherwise, we increase k 

instead. When it goes to practical filtering of real-time tweet stream, we again track a subset of messages and 

assign an initial k first. We then post-analyze the detection result of the subset. If many obvious spam tweets are 

not detected, we need to improve template generation precision by increasing k. We then refine the clusters 

using the single campaign template generation algorithm. Intuitively, spam messages from different campaigns 

will result in non-compact templates, a fact we utilize to identify which spam should be removed from a given 

cluster. We explain this process using the dataset as a running example. Specifically, we find a row to remove if 

the number of ε is larger than a predefined threshold w × p, where w denotes the word count (except notations 

and URLs) of the dataset/matrix and p is a systematical parameter. We set p no larger than the reciprocal of 

average word count per column. The reason is as follows: after column concatenation , we can treat words in 

each cell as one new larger word. Then w times the reciprocal of average word count per column approximates 

the number of such new larger words. If ε is more than such approximation, we consider the matrix as non-

compact. It contains nine, which is larger than 43 × 0.2 = 8.6 and we need to remove certain rows and all-ε 

columns to make it more compact. We first find the column with the most that is, the fourth column. We then 

remove any row corresponding to non-ε words in the fourth column, that is, the last row. After deletion, the 

fourth column contains only ε, which should be removed as well. We repeat the above process over the new 

matrix. 

 

6. Noise  labeling: 

Spam messages often mention other users, popular terms and hash tags unrelated to the semantics of the rest of 

the messages. Such content helps expose spam to a larger audience, because users may search or browse tweets 

by topic. It also diversifies spam and makes detection difficult. We refer to this type of content as noise. Popular 

forms of noise include celebrity names, TV shows, trending hash tags and many others. We next elaborate how 

noise affects template generation and design a model to automatically label noise given a small amount of 

easily, manually labeled noise as trained data. Once trained well, the model can accurately label noise tokens in 

real-time stream of spam tweets during Tangram execution. Noise creates extra difficulties for template 

generation. If the generated template contains a segment of noise, the template will be too “specific”, in the 

sense that it cannot match the spam with a different sequence of noise terms. In addition, spam instantiating 

different templates may coincidentally share an identical sequence of noise terms. It increases the chance to 

mislead the template generation module so that it attempts to extract a single template for them. Thus, we first 

perform a pre-processing step to identify noise tokens in the messages, and then effectively ignore them when 

generating the template (i.e., we replace them with a wildcard that matches anything).  

 

We treat noise detection as a sequence labeling task, in which the goal is to automatically label each token in the 

tweet as noise or non-noise. We employ a standard sequence-labeling approach, Conditional Random Fields 

(CRFs). The CRF is a model, learned from training data, that infers a label for each token in a given messsages. 

The model exploits regularities in the features of noise and non-noise tokens (detailed below), as well as 

regularities in label sequences. The CRF requires identifying a set of features for each token that are relevant to 

the task. In our case, we found a set of features that appear to be highly indicative of noise. The key observation 

is that noise terms are popular, yet unrelated to each other and to other elements of the messages. We would 

expect regions of noise to contain individual tokens that are common on messages, but transitions between 

tokens that are relatively uncommon. We capture these intuitions with three numeric features. Let freq(s) 

represent the frequency of a string s, which we measure of a large set of unlabeled messages. For each token ti 

in a messages, we create the following three features in the CRF: freq(ti),freq(titi+1)2/(freq(ti)freq(ti+1)), and 

freq(ti−1ti)2/(freq(ti−1) freq(ti)). The first feature captures the popularity of the token, whereas the second and 

third estimate how likely ti is to occur given the surrounding tokens. We processed these features into five 

discrete quintiles for incorporation into the CRF. We further add four orthographic features to capture common 

elements of noise terms. They indicate whether ti is capitalized, is numeric, is a hashtag, or is a user mention @. 

To  train our CRF, we hand-labeled 1,000 messages as training data, manually identifying each token as noise or 

non-noise. We then employed this learned model on each messages   before template generation. In a separate 

experiment on the labeled messages, we found that our trained CRF correctly labeled an average of 92% of test-

set tokens as noise or non-noise. 
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                     Fig1: Registration Phase                                                                                   Fig4: Post Photos 

 

 

 
                          Fig2: Registration Details                                                                          Fig5: View and confirm request 

  

 

 
                                Fig3: Edit Profile                                                                               Fig6: Admin Zone 

 

        

 
Fig6: View Members in Admin Zone 
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Fig7: View Templates in Admin Zone 

 

 

 

Fig8: Spam Box In Admin Zone 

 

III. RESULTS AND DISCUSSION 
We evaluate Tangram using the labeled dataset as ground truth. The two major metrics that we use to evaluate 

the system are accuracy and speed. For accuracy, we primarily evaluate the following two aspects:  

 

i) true positive rate, the ratio of correctly classified messages to the total number of messages, (We only count 

spam caught by template matching or noise detection as true positives.) and ii) false positive rate, the ratio of 

legitimate but incorrectly classified messages to the total number of legitimate messages. (We count mis-

detected legitimate messages as false positives.) Besides, we may occasionally report false negatives, which 

count spam missed by the two modules but labeled in the ground truth. Defining the ratio of such messages to 

the total number of message in ground truth as false negative rate, we have that false negative rate + true 

positive rate = 1. For speed, we evaluate the template generation and matching latency. We feed the system with 

the collected messages obeying their timestamp order to reflect the performance in real-world scenario. We 

conduct all experiments on a server with an eight-core Xeon E5520 2.2GHz CPU and 16GB memory. Tangram 

needs an auxiliary spam filtering module to provide the initial set of spam messages to construct the underlying 

template. When a message reaches the auxiliary spam filter, it needs to be classified as either spam or legitimate 

with very little latency. We leverage an existing online OSN spam filtering tool to provide training spam 

samples toward conducting a realistic evaluation. We reuse the same parameters reported in the paper. The 

auxiliary spam filter is not an oracle. It may mistakenly report legitimate messages as spam, or miss to report 

spam messages. Note that in what follows we evaluate the detection accuracy of only the modules proposed in 

this paper, but not the accuracy of the auxiliary spam filter. We will factor the effect of auxiliary filter’s 

accuracy to Tangram. 
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1. Detection Accuracy : 

We test Tangram with spam window size t = 1000, which means when the number of spam messages that slip 

through the template matching module but are blocked by the auxiliary spam filter reaches 1000, the system will 

invoke the template generation module to infer the underlying templates of the messages. The value of 

parameter k is 4. The results show that the TP rate for the most prevalent template-based spam achieves 95.7%. 

The system can also detect some non–template-based spam messages, because the system treats all messages as 

if they were template-based, and makes best-effort detection. As expected, the TP rate of such messages is lower 

than that of template-based messages. The overall TP and FP rate are 76.2% and 0.12%, respectively. 

 

2. True Positive Analysis:  

Tangram has two detection modules. Both modules perform well on the specific spam category that they are 

designed for. The template generation/matching module can detect template-based spam with 95.7% TP rate 

(336,849 out of 558, 706 × 63%). The noise detection module can detect no-content spam with 73.8% TP rate 

(34,635 out of 558, 706 × 8.4%). Unfortunately, the true positive rate of the other two spam categories is lower. 

About 80% of the false negatives (spam misclassified as legitimate with a rate of 1 - TP rate) belong to the other 

two categories. 

 

3. False Positive Analysis:  

Since the labeling approach we use to build the ground truth may miss to label true spam tmessages ,We further 

compare the true positives against the detected tweets that are not labeled. We observe that spammers frequently 

attach messages marks (RT @username) and Mentions (@username) at the beginning of messages, as well as 

noise words after the embedded URL. Hence, we remove all the noise and acquire the stem of spam messages . 

Any messages that shares the same stem with spam messages is also regarded as spam. The comparison reveals 

that 15,271 (0.12%) messages reported by Tangram are neither labeled as spam, nor sharing the same stem with 

spam messages.  They represent the false positives that our system incurs. We thus use it as a post-processing 

step in the evaluation, rather than adopting it in the system design. Among the false positive messages, 42.0% of 

them are caused by overly general spam templates. Another 21.7% of them are popular messages like birthday 

wishes for Nelson Mandela. These popular tweets are mistakenly reported as spam by the auxiliary filter, so 

templates are generated to match them.  

 

4. Template Analysis: 

To understand how spammers develop spam templates empirically in a realistic dataset. The actual URLs are 

replaced by the “{URL}” symbol. An ε means the dictionary macro may instantiated as an empty string. An  

“…” means that the dictionary macro has more options that are not shown due to readability and space 

consideration. 

Size: We do not observe dominant templates in Twitter. The most popular template matches 11.1% of true 

positives. The top ten most popular templates match 50.5% of true positives.  

 

5. Use of noise: 

 Although in theory spammers can insert noise at any position in the template, practical spam messages have 

noise at either the beginning or the end, or both. Noise at the beginning is usually Mentions (@username) and 

Retweet marks (RT @username). There can be multiple consecutive Mentions and Retweet marks at the 

message beginning. Noise at the end contains primarily Hashtags (#XXX, XXX being a topic) and popular 

terms like celebrity names and TV shows. 

 

6. Message diversity:  
As the number of dictionary macro increases, the number of unique messages the template can generate 

increases quickly. multiple dictionary macros.  

 

7. Detection Accuracy Comparison:  
With Existing Work We limit the direct experimental comparison to only the approaches that examine the 

message content to detect spam. Syntactical Clustering + Machine Learning: We first compare with a recent 

spam detection work that adopts syntactical message clustering and supervised machine learning (denoted as the 

syntactical clustering approach hereafter) in detail. The two systems share similar design goals. In addition, the 

existing approach is used as the auxiliary spam filter in our experiment. Hence, it is crucial to quantify the 

detection accuracy gains over directly using the existing system. We run the system using the same dataset on 

which we test Tangram. The syntactical clustering approach achieves an overall detection accuracy of 63.3% TP 

rate and 0.27% FP rate. The true positive rate obtained by the syntactical clustering approach on our data is 

lower than the reported number .The reason is that our spam labeling approach labels more spam messages as 

ground truth, which the syntactical clustering approach does not detect. In contrast, Tangram achieves a 
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substantial improvement on both the TP rate (to 76.2%) and the FP rate (to 0.12%). The difference between the 

spam detected by these two systems indicates that they can potentially complement each other. This simple 

integration suffers from increased FP rate of 0.33%, but can boost TP rate to 85.4%. Judo: To validate that our 

template generation technique is more tailored to OSN spam detection, we also compare our work with a recent 

email spam detection system called Judo. Judo detects email spam based on template generation. We have 

already presented the difference between the two systems analytically by elaborating the difference in the 

critical system assumptions, i.e., invariant substring in template and quality of training samples. We further 

demonstrate their difference in experimental results, column “Judo”. Different from our system, Judo requires 

training set that contains pure spam generated by the same underlying template. We implement the template 

generation mechanism of Judo as described in and test the detection accuracy using the same dataset. Even with 

small window size (10 spam messages), the generated templates can only achieve 35.9% TP rate. The TP rate 

further drops to 10.6% if the window size is increased to 20. On the other hand, the FP rate is high (5.0%). It 

shows that real-world OSN trace breaks the crucial assumptions of Judo. As a result, Judo achieves extremely 

high accuracy in email spam detection, but does not perform well for OSN spam detection. 

 

8. Detection Accuracy Comparison With URL Blacklists:  

It is well known that most spam fools people via deceitful (plain or shortened) URLs. Such URLs usually direct 

to websites that advertise scams, phish one’s credentials, or propagate other malicious contents. An intuitive 

countermeasure might detect spam using blacklisted URLs. If a messages contains a blacklisted URL, it is 

highly likely that the mesages is not benign. We verify such intuition on the following popular websites that 

provide URL blacklist query service—Bitly, Virustotal, and Wepawet. We collect a more recent dataset with 9 

million messages from Twitter in October, 2014. Among spam messages therein,99.2% end with a shortened 

URL. We redirect all the URLs in the spam messages to see whether the landing page has been suspended. The 

results show that the ability of Bitly is limited—only 50.0% of spam tweets can be detected via suspended URLs 

on Bitsy. Then we perform similar URL checking against Virustotal and Wepawet. They respectively reveal 

50.9% and 33.3% of the spam. Note that the detected spam messages via these websites are highly redundant; 

the overall detection accuracy is 58.1%. On the other hand, Tangram can detect them with the TP rate of as high 

as 77.9%. We run Tangram again over the January 2015 dataset. It yields a consistently satisfactory TP as in 

October 2014 dataset, which is 71.2%. 

 

9. Effect of Auxiliary Filter Quality: 

Since the auxiliary spam filter essentially provides training samples for template generation, it is crucial to 

understand how the accuracy of the auxiliary spam filter affects Tangram’s detection accuracy. As 

aforementioned, we focus on the accuracy of our proposed modules—template matching and noise detection. 

We first try to analytically capture how their accuracy varies with that of auxiliary filter. Let Ts and Tl represent 

the number of spam tweets and the number of legitimate tweets in the ground truth. Let Ss and Sl respectively 

denote the count of spam messages caught by template matching or noise detection and the count of legitimate 

messages mis-classified as spam. Then Ss+Sl denotes the count of all spam tweets detected by our modules of 

template matching and noise detection, for which we have  FP = Sl/Tl and FN = 1 – Ss/Ts.Since Tl and Ts are 

invariants from ground truth, we next analyze how Sl and Ss and therefore FP and FN are affected by auxiliary 

filter’s FPaux and TPaux. (Note that we have FNaux = 1 − TPaux.). It further falls into two parts: one is 

legitimate messages in Tl matched by templates generated from FPauxTl messages the other is legitimate 

messages in Tl matched by templates generated from TPauxTs messages. As previous results show, the second 

part should be small. It is thus FPaux that affects more on our modules’ FP. The larger FPaux is, the larger FP 

tends to be. Since it is hard to deduce the exact number of legitimate messages in Tl matched by templates 

generated from FPauxTl messages, we choose to empirically evaluate the effect of FPaux shortly.Although 

TPaux increases with the count of spam messages  caught by auxiliary filter, more detected spam may not 

promise more templates. Template matching thus may not match and detect more spam than it does using 

generated templates. Again, we will empirically evaluate how TPaux affects our modules’ accuracy. First, we 

mimic low true-positive–rate auxiliary filter by sampling 50%, 20% and 10% of spam uniformly at random to 

feed template matching. The resulting true positive rate is 64.9%, 64.9% and 63.0%, respectively. Given the 

randomness of tweet stream, such sampling decreases the number of spam tweets but not their generating 

templates. Our methods’ true positive rate does not drop that much. We set auxiliary filter to have 0.5%, 1% and 

2% false positive rate. The resulting false positive rate is 1.2%, 3.53% and 3.3%, respectively. Second, we 

choose Virus Total as auxiliary filter to further evaluate how our methods’ accuracy (especially true positive 

rate) varies. Virus total’s true positive rate is 50.9%. Using it as auxiliary filter, our methods yield a true positive 

rate of 57.7%. This is even lower than what we obtain using the above auxiliary filter with true positive rate of 

10%. The reason is Virus total completely misses detecting spam messages generated by certain templates. 

Besides, our methods’ false positive rate is 7.6% while Virustotal’s is 4.3%. In summary, Tangram’s true 

positive rate drops only marginally if the auxiliary filter has low true positive rate that makes spam messages 
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with certain templates completely undetected. It is more sensitive to false positives from the auxiliary filter. 

Hence, in practice Tangram needs an auxiliary filter with a low false positive rate. This is a reasonable 

requirement, since we can tune the auxiliary filter to be conservative in reporting spam. 

 

10. Template Generation/Matching Speed Template Matching:  
The template matching latency incurred by Tangram is minimal and is not noticeable to users. Figure 2 plots the 

minimum, 25% quantile, 75% quantile and maximum of the template matching time as a function of the number 

of generated templates. We observe a large variance of template matching latency, because the time consumed 

for regular expression matching highly depends on the text being matched. Nevertheless, the largest latency in 

the entire dataset is less than 80ms. The overall trend is that the template matching latency, shown by the boxes 

representing the 25% quantile and the 75% quantile, grows slowly with the number of templates. Even with 

more than one thousand templates, the median template matching latency is only 8ms.  

 

11. Template Generation:  
It is crucial to throttle spam campaigns at their early stage. Hence, we measure how fast templates can be 

generated. The time to generate template depends on the number of buffered spam messages. In our experiment, 

the mean template generation time is only 2.3 seconds. Although slower than template matching, template 

generation is not the bottleneck of Tangram, since template generation is performed in parallel with template 

matching. 

 

12. Sensitivity for New Campaigns:  

We take the five largest campaigns, one of which matches the template instantiated by spam, and evaluate how 

fast Tangram reacts to newly emerged spam. We randomly select a small percentage of messages from each 

campaign, and use them as training samples to generate the template. We vary the percentage of training 

samples from 0.05% to 0.5%. The remaining messages serve as the testing set. We measure the true positive rate 

as the percentage of the testing set that the generated template can match. We observe that all campaigns 

achieve almost 100% coverage even with only 0.15% of messages as training samples. Three campaigns have 

lower coverage when only 0.05% of messages are used to generate the template, because the system has not 

observed all possible values of dictionary macros due to insufficient training samples. Nonetheless, the coverage 

quickly climbs up to almost 100% when the percentage of training samples increases. The result indicates that 

when new spam campaigns emerge, the system can react quickly and generate effective templates to throttle 

them.  

 

13. Accuracy on Facebook Data: 

To test Tangram’s generality on other OSNs, we collect 4.7 million comments from public Facebook pages 

generated from January 2012 to April 2013, and run Tangram on the Facebook data. We use two well-known 

blacklists, Mcafee siteadvisor [27] and myWoT [28], to label the ground truth: any comments embedded with 

blacklisted URLs are labeled as spam. The dataset contains 6,337 spam comments embedded with blacklisted 

URLs. Tangram achieves 77.8% true positive rate and 0.08% false positive rate. In particular, the spam template 

matching module and the syntactic clustering module contribute 72.1% true positive rate and 64.6% true 

positive rate, respectively. This illustrates that our system yields promising results on other OSNs as well. 

 

IV. CONCLUSION 
We have proposed and evaluated Tangram, a template-based system for accurate and fast OSN spam detection.  

Our measurement study reveals Other proposed techniques include focusing on embedded URL information like 

redirection chains, DNS and WHOIS information and so on  classifying URLs’ landing ,and using sender’s 

reputation Building sender profile features takes time and it is difficult to adopt for real-time detection. Few 

existing works can both do real-time detection and filter spam without URLs. 

 

Spam Measurement 
Thomas et al. examine a large corpus of suspended Twitter accounts in ,which provides rich knowledge on 

Twitter spammers that inspires our work from multiple aspects. Cao et al. design and implement a malicious 

account detection system called Synchro Trap which was able to reveal a lot of malicious accounts .Yang et al. 

design some more robust features to detect more Twitter spammers through in-depth analysis of the evasion 

strategies utilized by up-to-date Twitter spammers [37]. In addition, Grier et al. and Gao et al. discovered the 

popularity of compromised spamming accounts in Twitter and Facebook, respectively. Due to the different data 

collection method, most spamming accounts in our dataset are created by spammers. Yang et al. analyze the 

social network formed by spamming accounts and reveal different categories of legitimate accounts that follow 

spamming accounts [38]. Levchendo et al. and Kanich et al. study the monetization of spam campaigns [39], 

[40]. 
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Signature Generation 
The problem of spam template generation bears similarity with polymorphic worm signature generation .The 

worm signature generation is based on the assumption that polymorphic worm content contains invariant 

substrings, which is reasonable because some invariant bytes are crucial for successfully exploiting the 

vulnerability. However, this assumption is not solid in the context of spam detection, where spammers can 

express the same message using different expressions in human language. Our Twitter spam analysis supports 

this argument. that the majority of Twitter spam is likely to instantiate underlying templates. Based on the 

empirical findings, Tangram mainly employs template generation/matching to mitigate OSN spam. Tangram 

distinguishes from existing template generation work in that it can construct template in the absence of invariant 

substrings. Tangram detects OSN spam in real-time without a separate training phase. We further study several 

situational-awareness inference of spammers’ strategy. The findings promise more features for detecting spam 

and spamming accounts.


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