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ABSTRACT
In this paper a novel Youla-Kucera parameterization based robust controller is designed using multi-objective
genetic algorithm. The design approach is developed for SISO system and is implemented on servo system. The
design approach developed achieves multiobjectives related to robustness and disturbance rejection
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l. INTRODUCTION
In controller design, the Youla-Kucera Parameterization is useful as in it we can represent all the closed loop
transfer functions in terms of Youla-Kucera parameter Q. This paper presents a methodology to address the
problem of composite measure for multi-objective optimal performance of SISO systems. This technigque solves
H, and time domain characteristic constraints problems of SISO systems, simultaneously. We get desired
optimal multi-objective performance in the presence of conflicting objectives.

1.  YOULA-KUCERA PARAMETERIZATION OF STABILIZING CONTROLLERS
Consider the plant of order n with G, (S) as nominal transfer function and the SISO feedback configuration as
shown in the Figure 1[1].

R(s)+ E(s) U(s) Y(s)

C(sk) " G >

Figure 1: Control system consisting of a controller with fixed structure and a plant with model uncertainty

Gy(s)=—" ®

Let a,and bn are coprime polynomials and C is the proper stabilizing controller of order m with coprime

polynomials X, and Y, in a feedback framework,

é(s)=2n 2)
Xn
The system be internally bounded-input bounded-output (BIBO) stable which can be attained by

utilizing the Youla-Kucera parameterization of stabilizing controllers [2-4].
It follows from the YK parameterization that stabilizing controllers are parameterized as given by

cs)=Y-Y=2Q 3)
X 2-bQ
Where,a:_“,b:_",)”(:ﬁ,y:ﬁ,in (4)
ay ay Xy Xy Uy
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dy and X; are two polynomials which form a polynomial a,x,; so that deg @, =N and
deg Xy =M. Q is an arbitrary proper stable rational parameter, so that polynomial qd is stable and polynomial

dn has same or lower degree [5].

Polynomial YK parameters can be recovered from the controller polynomials via the following relation:

1. OPTIMIZING CONTROLLER STRUCTURE  WITH MULTI-OBJECTIVE
OPTIMIZATION TECHNIQUE

Youla-Kucera can be used as structure of the controller which is then optimized with the multi-objective
optimization technique. There is a trade-off between the controller order and the performance of the closed loop
system. This multi-objective optimization problem gives a family of non-dominated or pareto optimal solutions.
All the objective functions which the controller has to accomplished are contained in the evaluation function.
The performance evaluation function used in this work has seven objectives. The first two functions are the
condition for robust stability of the control system and the condition for disturbance rejection of the control
system which are the H. norm of the weighted complimentary sensitivity function and H. norm of the
sensitivity function in polynomial systems, respectively. The sensitivity of the control system from output z to
the disturbance d is characterized by closed loop sensitivity function S, [4], given by

1 a X
S = = n-n (6)
1+7bn yn aan +bn yn
aan
H.. norm of the weighted sensitivity function S is:
a X
5], - ‘wd _ A% @
0 a X, +b,y, |
and complementary sensitivity function is T, is given by
ax b
T=1-§=1-— 2% ___ B ®)
ax,+by, ax +by,
H.. norm of the weighted complimentary sensitivity function T is given by
b
IT|. =|w, _ O ©)
°° a,X, +by, |,

In order to assure good time response performance, five-time domain objectives included are rise time, settling
time, peak, overshoot, undershoot. The control problem is to design a controller, C, so that the resulting
feedback system should have no undershoot, minimal undershoot, minimal settling time, minimal rise time,
optimum peak and rejects the disturbance effectively.

V. EXAMPLE

To illustrate the method, a detailed design example is presented. Consider the control system shown in the
Figure 2. The model of the plant, servomotor taken from [6] is represented by the following transfer function

20
G.(s)=
o(s) s(s +1) (10)
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Figure 2: Control system with uncertainty and disturbance acting on the plant output

Go(s) is the nominal plant and C(s, k) is the Youla-Kucera controller.

Let bi=1,
Youla-Kucera parameter is taken as

a,;s+a,

=——1 0 11
b,s® +b,s+b, )

The vector k of youla-kucera parameter is given by k = [a,, a4, by, b,] T which is to be obtained solving the
multi-objective optimization problem.
The Plant model, using multiplicative uncertainty is given by

G(s)=Gy(sJL+ Als W (5)] (12)

where, Go (S) is the nominal transfer function of the plant, the plant perturbation A(s) is assumed to be stable but
uncertain, where the weighting function Wp, (s) is stable and known.

The multiplicative uncertainty Wm(s) for robustness is taken as [7];

0.1
W (S)=—F—7—"— (13)
) s +0.1s+10
First objective function f1 for robust stability in multi-objective optimization is
b
f1= rw b - (14)
a, X, +b.y, |
The weighting function Wd (S)for disturbance rejection is taken as [7];
1
19 (s+1)
The error signal E(s), assuming the input signal to be a unit step, is evaluated as follows:
1
E(s)=————RIs (16)
() 1+C(s,k)G, (s) )
The second objective function f2 for the disturbance rejection in multi-objective optimization is
a X
fo = ’\Nd — “n%n a7
an Xn + bn yn o

The H. norm is calculated using MATLAB function normhinf.
The controller parameter vector was searched within the following bounds:

a0 = [-20] al = [-40,0}b2 = [0,30};b3 = [0,500]
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By solving the optimization problem using MOGA, the following pareto front is obtained
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Figure 3: Pareto front between fland f2

Pareto front obtained in Figure 3 shows that when f1 increases f2 decreases.

The comparison between multi-objective Youla-Kucera controllers using MOGA optimization technique and
controller developed in [6] is shown in Figure 4.
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Figure 4: Step response of YK controllers designed with MOGA and method developed in [6]
With optimal solution vector k1, the step responses obtained are shown in the Figure 5 and Figure 6

Amplitude
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Figure 6: Step response of the controlled plant

Figure 5: Step response of the plant using k1
using k1 with and without disturbance

with and without uncertainty

With optimal solution vector k2, the step responses obtained are shown in the Figure 7 and Figure 8.
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Figure 7: Step response of the plant using

k2 with and without uncertainty

Figure 8: Step response of the controlled plant
using k2 with and without disturbance

With optimal solution vector k8, the step responses obtained are shown in the Figure 9 and Figure 10.
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Figure 9: Step response of the plant using

with and without uncertainty

k8

Figure 10: Step response of the controlled plant
using k8 with and without disturbance

With optimal solution vector k9, the step responses obtained are shown in the Figure 11 and Figure 12.
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Figure 11: Step response of the plant using k9 Figure 12: Step response of the controlled plant

with and without uncertainty using k9 with and without disturbance

With optimal solution vector k16, the step responses obtained are shown in the Figure 13 and Figure 14.
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Figure 13: Step response of the plant using
k16 with and without uncertainty

Figure 14: Step response of the controlled plant
using k16 with and without disturbance

With optimal solution vector k17, the step responses obtained are shown in the Figure 15 and Figure 16.
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Figure 16: Step response of the controlled plant

Figure 15: Step response of the plant using
using k17 with and without disturbance

k17 with and without uncertainty

The designed multi-objective controllers based on Youla-Kucera parameterization using MOGA optimization
technique have better tracking performance as compared to controller designed in [6] as observed in Figure 4.
The Table 1 provides the time domain performances with different YK controller parameters and controller

designed in [6]. Overshoot in all the Youla-Kucera controllers is zero.



Table 1: Time domain performances achieved by different Youla-Kucera controllers

S.No Controller Parameters Rise Settling Peak(s)
Time(s) | Time(s)
1 -13.9681, -35.1619,5.8825,305.3379 4.4414 7.2547 1.0000
2 -14.4226, -42.0459,5.9426,305.5810 0.5504 7.6107 0.9990
3 -9.8776, -9.2915,5.5629,303.1235 2.7911 4.7727 0.9990
4 -14.0715, -30.1832,5.8691,303.7410 3.9126 6.8781 0.9998
5 -14.3014, -39.2763,5.8784,305.3946 0.7922 7.4739 0.9993
6 -3.4217, -3.9720,5.4292,300.2193 3.3734 5.6587 0.9990
7 -9.3547, -13.1023,5.7594,302.0050 3.1709 5.6501 0.9990
8 -14.1123, -27.1486,5.9934,304.1224 3.5074 6.5842 0.9997
9 -3.6698, -9.5104,5.3277,301.5148 3.8471 6.3190 0.9999
10 -10.8642, -16.1105,5.7847,302.1719 3.1130 5.7627 1.0000
11 -13.4556, -23.9739,5.7596,303.8973 3.2825 6.3316 0.9998
12 -3.3018, -7.4861,5.3626,300.7535 3.7298 6.1491 0.9987
13 -9.8989, -14.9117,5.6683,303.3478 3.2212 5.8077 0.9983
14 -13.3353, -21.3108,5.7562,303.7084 2.9907 5.9920 0.9998
15 -10.2586, -20.2272,5.4330,302.0545 3.6628 6.4415 0.9987
16 -13.6111, -26.4131,5.7753,303.1691 3.5565 6.5847 0.9999
17 0, -1.1554,5.1909,300.1652 3.4815 5.9794 0.9998
18 Controller designed in [6] 57.3726 | 95.9679 0.9991

The designed multi-objective controllers based on Youla-Kucera parameterization using MOGA optimization
technique have lower rise time, setting time and peak as compared to controller designed in [6] as observed in
Table 1. The effectiveness of this novel design approach is tested on a servo system which provides excellent
tracking in the presence of uncertainties and disturbances
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