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ABSTRACT 
In this paper a novel Youla-Kucera parameterization based robust controller is designed using multi-objective 

particle swarm optimization. The design approach is developed for SISO system and is implemented on servo 

system. The design approach developed achieves multiobjectives related to robustness and disturbance rejection. 

INTRODUCTION  
In controller design, the Youla-Kucera Parameterization is useful as in it we can represent all the closed loop 

transfer functions in terms of Youla-Kucera parameter Q.  This paper presents a methodology to address the 

problem of composite measure for multi-objective optimal performance of SISO systems. This technique solves 

H∞ and time domain characteristic constraints problems of SISO systems, simultaneously. We get desired optimal 

multi-objective performance in the presence of conflicting objectives. 

 

YOULA-KUCERA PARAMETERIZATION OF STABILIZING CONTROLLERS 

Consider the plant of order n with  sG0  
as nominal transfer function and the SISO feedback configuration as 

shown in the Figure 1[1]. 

 

 
Figure 1: Control system consisting of a controller with fixed structure and a plant with model uncertainty 
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Let  na and nb
 
are coprime polynomials  and  Ĉ is the proper stabilizing controller of order m with coprime 

polynomials nx̂  and nŷ  in a feedback framework,  
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The system be internally bounded-input bounded-output (BIBO) stable which can be attained by utilizing the 

Youla-Kucera parameterization of stabilizing controllers [2-4].  

 

It follows from the YK parameterization that stabilizing controllers are parameterized as given by 

                                                        

 
bQx

aQy

x

y
sC






ˆ

ˆ

                                   

 (3) 

Perinola Journal , ISSN: 1342-0267                                                          Volume15, Issue 4, 2025

https://perinolajournal.com               DOI: 10.2641/Perinola.150110               Page No:86



                                      where, 

d

n

d

n

d

n

d

n

d

n

q

q
Q

x

y
y

x

x
x

a

b
b

a

a
a

ˆ
,

ˆ
ˆ,

ˆ
ˆ,,                     (4) 

da  and dx  are two polynomials which form a polynomial 𝑎𝑑𝑥𝑑  so that deg nad   and 

deg mxd  . Q is an arbitrary proper stable rational parameter, so that polynomial dq̂  is stable and polynomial

nq̂  has same or lower degree [5].

 

 

Polynomial YK parameters can be recovered from the controller polynomials via the following relation: 
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   (5) 

YK parameters are polynomials. 

 

OPTIMIZING CONTROLLER STRUCTURE WITH MULTI-OBJECTIVE OPTIMIZATION 

TECHNIQUE 

Youla-Kucera can be used as structure of the controller which is then optimized with the multi-objective 

optimization technique. There is a trade-off between the controller order and the performance of the closed loop 

system. This multi-objective optimization problem gives a family of non-dominated or pareto optimal solutions. 

All the objective functions which the controller has to accomplished are contained in the evaluation function. The 

performance evaluation function used in this work has seven objectives. The first two functions are the condition 

for robust stability of the control system and the condition for disturbance rejection of the control system which 

are the H∞ norm of the weighted complimentary sensitivity function and H∞ norm of the sensitivity function in 

polynomial systems, respectively. The sensitivity of the control system from output z to the disturbance d is 

characterized by closed loop sensitivity function S, [4], given by 
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H∞ norm of the weighted sensitivity function S is:
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and complementary sensitivity function is T, is given by 
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H∞ norm of the weighted complimentary sensitivity function T is given by 
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In order to assure good time response performance, five-time domain objectives included are  

rise time, settling time, peak,  overshoot, undershoot. The control problem is to design a controller, C, so that the 

resulting feedback system should have no undershoot, minimal undershoot, minimal settling time, minimal rise 

time, optimum peak and rejects the disturbance effectively. 

 

 

EXAMPLE   

To illustrate the method, a detailed design example is presented. Consider the control system shown in the Figure 

2. The model of the plant, servomotor taken from [6] is represented by the following transfer function  
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Figure 2: Control system with uncertainty and disturbance acting on the plant output 

 

Go(s) is the nominal plant and  ksC ,  is the Youla-Kucera controller. 

Let b1= 1, 

Youla-Kucera parameter is taken as 
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The vector k of youla-kucera parameter is given by k = [𝑎0 , 𝑎1, 𝑏1, 𝑏2] T which is to be obtained solving the multi-

objective optimization problem.  

 

The Plant model, using multiplicative uncertainty is given by  

                                                        
        sWssGsG m 10     

  (12) 

 

where,  sG0 is the nominal transfer function of the plant, the plant perturbation ∆(s) is    assumed to be stable but 

uncertain, where the weighting function Wm (s) is stable and known. 

 

The multiplicative uncertainty Wm(s) for robustness is taken as [7]; 
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First objective function f1 for robust stability in multi-objective optimization is 
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The weighting function  sWd for disturbance rejection is taken as [7];  
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The error signal  sE , assuming the input signal to be a unit step, is evaluated as follows: 
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The second objective function f2 for the disturbance rejection in multi-objective optimization is  
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The H∞ norm is calculated using MATLAB function normhinf. 

 

The controller parameter vector was searched within the following bounds: 

          500,03;30,02;0,401;200  bbaa  

By solving the optimization problem using MOPSO, the following pareto front is obtained  
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Figure 3: Pareto front between f1and f2 

 

Pareto front obtained in Figure 3 shows that when f1 increases f2 decreases. 

 

The comparison between multi-objective Youla-Kucera controllers using MOPSO optimization technique and 

controller developed in [6] is shown in Figure 4. 

 

 
Figure 4: Step response of YK controllers designed with MOPSO and method developed in [6] 

 

 

With optimal solution vector k1, the step responses obtained are shown in the Figure 5 and Figure 6 
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Figure 5:  Step response of the plant using k1 

                  with and without uncertainty  

Figure 6: Step response of the controlled plant 

                 using k1 with and without disturbance                          

 

With optimal solution vector k2, the step responses obtained are shown in the Figure 7 and Figure 8. 

 
 

         Figure 7:  Step response of the plant using               

       k2 with and without uncertainty                                                                                         

         Figure 8: Step response of the controlled plant    

             using k2 with and without  disturbance                                     

 

With optimal solution vector k8, the step responses obtained are shown in the Figure 9 and Figure 10. 

  
Figure 9: Step response of the plant using  k8   

                 with and without uncertainty  

Figure 10: Step response of the controlled plant 

                   using k8 with and without disturbance                          

With optimal solution vector k9, the step responses obtained are shown in the Figure 11 and Figure 12. 
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Figure 11:  Step response of the plant using 

       k9  with and without uncertainty 

Figure 12:  Step response of the controlled plant 

                    using k9 with and without disturbance                          

 

With optimal solution vector k16, the step responses obtained are shown in the Figure 13 and Figure 14. 

 
 

Figure 13: Step response of the plant using     

                     k16 with and without uncertainty 

Figure 14: Step response of the controlled plant 

                     using k16 with and without disturbance                       

With optimal solution vector k17, the step responses obtained are shown in the Figure 15 and Figure 16. 

                      

Figure 15:  Step response of the plant using     

       k17 with and without uncertainty 

Figure 16:  Step response of the controlled plant 

                      using k17 with and without disturbance                          

  

The designed multi-objective controllers based on Youla-Kucera parameterization using MOPSO optimization 

technique have better tracking performance as compared to controller designed in [6] as observed in Figure 4. 

 

The Table 1 provides the time domain performances with different YK controller parameters and controller 

designed in [6]. Overshoot and undershoot in all the Youla-Kucera controllers are zero. 

 

Table 1: Time domain performances achieved by different Youla-Kucera controllers 

S.No   YK Controller Parameters Rise 

Time(s) 

Settling 

Time(s) 

Peak(s) 

1 -15.3260, -15.6539,23.9185,0.6355 2.9967 5.1033  0.9988 

2 -16.3167, -20.0641,16.1214,425.7789 2.7687 5.1854 0.9990 
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3 -17.4116, -24.2029,17.8870,383.9881 2.5746 5.4741 0.9993 

4 -14.8167, -17.7500,23.5615,477.3169 29739 5.2911 0.9999 

5 -13.5499, -14.9519,25.8987,481.2203 2.9853 5.2051 0.9995 

6 -15.3943, -19.9775,23.3553,409.2783 2.5723 4.5271 0.9998 

7 -10.9469, -12.0422,14.7353,429.0803 3.0851 5.2908 0.9990 

8 -14.4880, -20.9202,21.2883,442.2322 3.1231 5.6974 0.9991 

9 -19.0775, -28.2811,18.5674,414.4543 2.6503 5.7215 0.9993 

10 -13.7145, -15.5487,24.2625,468.7496 2.9772 5.2243 0.9983 

11 -12.2949, -13.6354,17.7742,404.8556 2.9388 5.1545 0.9930 

12 -14.2521, -17.0006,19.5321464.8493 2.9938 5.2967 1.0000 

13 -14.7554, -19.6819,17.7904,390.5785 2.8650 5.4358 0.9996 

14 -13.8287, -16.3983,23.1842,466.9733 3.0065 5.3045 0.9986 

15 -15.8988, -20.6454,22.8656,467.2105 2.9599 5.4192 1.0000 

16 -11.3925, -13.8834,16.2798,409.8965 3.0940 5.4039 0.9996 

17 -11.5601, -11.5371,21.8356,461.9649 3.01407 5.1559 0.9984 

18 Controller designed in [6] 57.3726 95.9679 0.9991 

 

The designed multi-objective controllers based on Youla-Kucera parameterization using MOPSO optimization 

technique have lower rise time, setting time and peak as compared to controller designed in [6] as observed in 

Table 1. The effectiveness of this novel design approach is tested on a servo system which provides excellent 

tracking in the presence of uncertainties and disturbances. 

 

REFERENCES 
1. M. Jamshidi, L. D. S. Coelho, R. A. Krohling and P. J. Fleming, “Robust Control System with Genetic 

Algorithm”, CRC Press, 2003. 

2. A. Yue and I. Postlethwaite, “Improvement of Helicopter Handling Qualities using H∞ -Optimization”, 

IEEE Proc-D Control Theory and Applications, vol. 137, pp. 115-129, May 1990. 

3. V. Kucera, “Stability of Discrete Linear Feedback Systems”, Proc. of the 6th IFAC World Congress, 

Boston, MA, USA, 1975. 

4. D. Henrion, V. Kucera and A. M. Cristobal, “Optimizing Simultaneously over the Numerator and 

Denominator Polynomials in the Youla-Kucera Parametrization”, IEEE trans. on Automatic Control, 

vol. 50, no. 9, pp. 1369-1374, 9 Sept. 2005. 

5. V. Kucera, “Diophantine Equations in Control-A Survey”, Automatica, vol. 29, no. 6, pp. 1361-1375, 

1993. 

6. T. Glad and L. Ljung., “Control Theory - Multivariable and Nonlinear methods" Taylor and Francis, 

2000. 

7. J. C. Doyle, B.A. Francis and A. R. Tannenbaum, “Feedback Control Theory”, Macmillan Publishing, 

New York, 1992. 

 

 

 

 

 

Perinola Journal , ISSN: 1342-0267                                                          Volume15, Issue 4, 2025

https://perinolajournal.com               DOI: 10.2641/Perinola.150110               Page No:92


