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ABSTRACT 
The objective of this study is to conduct a numerical investigation of turbulent natural convection in a 3-D 

cavity using the k-ω SST model and the SIMPLEC method. The statistical-averaging process of the mass, 

momentum and energy governing  equations  introduces unknown turbulent correlations into the mean flow 

equations which represent the turbulent transport of momentum, heat and mass, namely Reynolds stress (𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅) 

and heat flux (𝑢𝑖𝜃̅̅ ̅̅ ), which are modelled using k-ω SST model. The Reynolds-Averaged Navier-stokes (RANS), 

energy and k-ω SST turbulent equations are first non-dimensionalized and the resulting equations are discretized 

using Finite Volume Method and solved using SIMPLEC. From the results,both the experimental data and 

simulation using SIMPLEC return a non-dimensional temperature of 0.5 at the core of the cavity and almost 

zero towards the cold and the natural turbulence flow is responsible for temperature distribution. 
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I. INTRODUCTION 
In fluid dynamics, turbulence is a flow regime characterized by chaotic and stochastic changes. This includes 

low momentum diffusion, high momentum convection and rapid variation of pressure and velocity in space and 

time.   Turbulent flows exist everywhere in nature from the jet stream to the oceanic currents.  Turbulent flows 

are highly irregular and random which makes a deterministic (predictable) approach to turbulence problems 

impossible.  

 

II. MATHEMATICAL FORMULATION 
In this thesis, a numerical investigation of turbulent natural convection within a 3-D is conducted. The geometry 

is illustrated in figure 3.1. It consists of a hot surface, located on the left side of the rectangular cavity wall, and 

a cold surface on the right side. The enclosure is heated on the hot wall (Red color) and cooled on the cold wall 

(blue color).The measurement of Ampofo and Karyiannis (2003) were used. The walls measures 0.75m by 

0.75m wide by 1.5m. The hot and cold walls of the cavity were isothermal at 323±0.15K and 283±0.15K 

respectively, giving a Reyleigh number of 1.58 × 109. Each of the remaining walls are adiabatic. All boundaries 

of the enclosure are stationary, non-slip, rigid and impermeable.  

 

Initially, the fluid is motionless the temperature of which is equal to the average temperature of the vertical 

walls. Let the temperature of the heater be 𝑇ℎ and that of the window be  𝑇𝑤. The temperature of the heater and 

that of the window are varied such that   𝑇ℎ > 𝑇𝑤. This implies that the density gradient of the internal fluid is 

normal to the gravity and the buoyancy–driven natural convection starts immediately the heat is applied. Due to 

the buoyancy, a fluid motion is induced in the enclosure depending on the enclosure geometry (i.e. aspect ratio 

A=H/L), the working fluid (air) and temperature difference ∆T. 

 

The fluid to be used is air. Therefore fluid flow will depend only on the temperature difference given as   ∆T=
𝑇ℎ − 𝑇𝑤. Aspect ratio A=H/L=0.5, Where H is the height and L is the Length of the enclosure. The 

characteristic length is taken to be the size of the enclosure in the 𝑥 − direction. Furthermore, the Boussinesq 

Approximation (1903) is assumed and is presented below. 

In this research, we will zero in on the standard 𝜅 − 𝜔 𝑆𝑆𝑇 turbulence models as documented by Awuor (2012) 

and study the variables as used by Ampofo and Karyiannis (2003). 
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   Fig. 2.1   Geometry of the 3-D numerical model 

 

III. GOVERNING EQUATIONS 
The equations governing the flow of incompressible Newtonian fluid are derived from equations, which enforce 

the conservation of mass, the conservation of momentum, and conservation of energy. The equation of 

continuity, the momentum equation and the energy equation are given as equations (3.1), (3.2) and (3.3) below 

respectively: 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝜌𝑢𝑗) = 0                                                                                                                   (3.1) 

𝜕

𝜕𝑡
𝜌𝑢𝑗 +

𝜕

𝜕𝑥𝑗

𝜌𝑢𝑖𝑢𝑗 = −
𝜕𝑃

𝜕𝑥𝑖

+ 𝜌𝑔𝑖 +
𝜕

𝜕𝑥𝑗

[𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) + 𝜇𝑠𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘

]                                    (3.2) 

 

Where 𝜇 and 𝜇𝑠 are the first and second coefficient of viscosity. 

𝜕

𝜕𝑡
(𝐶𝑃𝜌𝑇) +

𝜕

𝜕𝑥𝑗

(𝐶𝑃𝜌𝑢𝑗𝑇) =
𝜕

𝜕𝑥𝑗

(𝜆
𝜕𝑇

𝜕𝑥𝑗

) + 𝛽𝑇 (
𝜕𝑝

𝜕𝑡
+

𝜕𝑢𝑗𝑝

𝜕𝑥𝑗

) + Φ                                                           (3.3) 

 

IV. TURBULENCE MODELING 
 

Reynolds Decomposition 

The concept entails decomposing the instantaneous fluid flow quantities (variables) in the Navier-Stokes 

equations into mean (time-averaged) value and fluctuating value.  

 

Instantaneous Equations of Motion   

A turbulent flow instantaneously satisfies the Navier-Stokes equations and the equations of motion for the 

instantaneous variables are; 

 
𝜕𝜌̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(𝜌̃𝑢̃𝑗) = 0                                                                                                                               (4.1) 

 

𝜕

𝜕𝑡
𝜌̃𝑢̃𝑗 +

𝜕

𝜕𝑥𝑗

𝜌̃𝑢̃𝑖𝑢̃𝑗 = −
𝜕𝑃̃

𝜕𝑥𝑖

+ 𝜌̃𝑔𝑖 +
𝜕

𝜕𝑥𝑗

[𝜇 (
𝜕𝑢̃𝑖

𝜕𝑥𝑗

+
𝜕𝑢̃𝑗

𝜕𝑥𝑖

) + 𝜇𝑠𝛿𝑖𝑗𝜌
𝜕𝑢̃𝑘

𝜕𝑥𝑘

]                               (4.2) 
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𝜕

𝜕𝑡
(𝐶̃𝑃𝜌̃𝑇̃) +

𝜕

𝜕𝑥𝑗

(𝐶̃𝑃𝜌̃𝑈𝑗𝑇̃) =
𝜕

𝜕𝑥𝑗

(𝜆
𝜕𝑇̃

𝜕𝑥𝑗

) + 𝛽𝑇 (
𝜕𝑝

𝜕𝑡
+

𝜕𝑢̃𝑗𝑝

𝜕𝑥𝑗

) + Φ(4.3) 

 

The equations satisfied by the mean flow are obtained by   substituting the Reynolds decomposition into the 

instantaneous Navier-Stokes equations and taking the average of the equations       

 

Averaged Equations of Motion 

a) Continuity equation for Turbulent flow   

Decomposing the instantaneous differential form of the continuity equation (4.2) into its mean and turbulent 

part, taking the time average and simplifying yields; 
𝜕𝜌̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝜌̅𝑢̅𝑗 + 𝜌′𝑢𝑗
′̅̅ ̅̅ ̅) = 0                                                                                                                                  (4.4) 

 

b) Momentum Equation for Turbulent Flow   

Decomposing the instantaneous dependent variables of the momentum equation, taking the average, expanding 

and then simplifying this equation yields:- 

𝜕

𝜕𝑥𝑗

[𝜇 (
𝜕(𝑢̅𝑖 + 𝑢𝑖

′ )

𝜕𝑥𝑗

+
(𝑢̅𝑗 + 𝑢𝑗

′ )

𝜕𝑥𝑖

) + 𝜇𝑠𝛿𝑖𝑗𝜌
𝜕(𝑢̅𝑘 + 𝑢𝑘

′ )

𝜕𝑥𝑘

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

=
𝜕

𝜕𝑥𝑗

[𝜇 (
𝜕𝑢̅𝑖

𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖

) + 𝜇𝑠𝛿𝑖𝑗

𝜕𝑢̅𝑘

𝜕𝑥𝑘

]          (4.5) 

  

 

The correlation 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ in equation (4.5) is generally nonzero. 

(a)  Mean Heat Equation 

Decomposing the instantaneous temperature variable in the heat equation into the mean part and the deviation 

from the mean, and simplifying this equation yields;  

 
𝜕

𝜕𝑡
(𝐶𝑃𝜌̅𝑇̅ + 𝐶𝑃𝜌′𝑇′̅̅ ̅̅ ̅) +

𝜕

𝜕𝑥𝑗

(𝐶𝑃𝜌𝑢𝑗̅̅ ̅̅̅𝑇̅)

=
𝜕𝑝̅

𝜕𝑡
+

𝜕𝑝̅

𝜕𝑥𝑗

+ 𝑢′𝑖
𝜕𝑝′

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
+

𝜕

𝜕𝑥𝑗

(𝜆
𝜕𝑇̅

𝜕𝑥𝑗

− 𝐶𝑃𝜌̅𝑢′
𝑖𝑇

′̅̅ ̅̅ ̅̅ − 𝐶𝑃𝜌′𝑢𝑖𝑇
′̅̅ ̅̅ ̅̅ ̅̅ ) + Φ̅                                (4.6) 

 

Where;  

Φ̅ = 𝜏𝑖𝑗̅̅ ̅
𝜕𝑢𝑖̅

𝜕𝑥𝑗

+ 𝜏′𝑖𝑗

𝜕𝑢′𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                                                                                                                                            (4.7) 

 

V. NON-DIMENSIONALISATION 
This implies the partial or full removal of units from an equation involving physical quantities by a suitable 

substitution of variables. This technique can simplify and parametize problems where measured units are 

involved. The reesulting equations in general form become;  
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑖 + 𝜌𝑢𝑗̅̅ ̅̅ ̅)                                                                                                                                         (5.1)  

 
𝜕

𝜕𝑡
(𝜌𝑈𝑖 + 𝜌𝑢𝑖̅̅ ̅̅ ) +

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑖𝑈𝑗 + 𝑈𝑖𝜌𝑢𝑗̅̅ ̅̅ ̅) = −𝑁1

𝜕𝑃

𝜕𝑥𝑖

+ 𝑁2𝑝𝑔𝑖 +
𝜕

𝜕𝑥𝑗

(𝑁3𝜏𝑖𝑗 − 𝑈𝑖𝜌𝑢𝑖̅̅ ̅̅ − 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅)

= 0                                                                                                                                           (5.2) 

 
𝜕

𝜕𝑡
(𝑐𝑃𝜌Θ + 𝑐𝑃𝜌Θ̅̅ ̅̅ ) +

𝜕

𝜕𝑥𝑗

(𝑐𝑃𝜌𝑈𝑗Θ̅̅ ̅̅ ̅̅ ̅)

= 𝐿1 [
𝜕𝑝

𝜕𝑡
+ 𝑈𝑗

𝜕𝑝

𝜕𝑥𝑗

+ 𝑢𝑗

𝜕𝑝

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅
] +

𝜕

𝜕𝑥𝑗

(𝐿2𝜆
𝜕Θ

𝜕𝑥𝑗

− 𝑐𝑃𝜌Θ̅̅ ̅̅ + 𝑐𝑃𝜌Θ)

+ 𝐿3∅                                                                                                                                                                              (5.3) 
𝜕

𝜕𝑡
𝜌𝑘 +

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑖𝑘) = 𝐴1𝑢𝑗

𝜕𝜇

𝜕𝑥𝑗

(
̅̅ ̅̅ ̅̅ ̅̅ ̅𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

) −
1

2

𝜕

𝜕𝑥𝑗

𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅
𝜕𝑈𝑖

𝜕𝑈𝑗

+ 𝐵2𝜌𝑢𝑖̅̅ ̅̅̅𝑔𝑖 − 𝐵3𝑢𝑗

𝜕𝑝

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅
                                 (5.4) 
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𝜕

𝜕𝑡
𝜌𝜔 +

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑗𝜔)

= −
𝜕

𝜕𝑥𝑘

(𝐵1𝜇𝑢𝑘

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 2𝐵2𝜈

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑢𝜌

𝜕𝑥𝑖

− 𝐵1𝜇
𝜕𝜔

𝜕𝑥𝑘

)

− 2𝐵1𝜇
𝜕𝑈𝑖

𝜕𝑥𝑗

(
𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑘

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑘

) − 2𝐵1𝜇
𝜕2𝑈𝑖

𝜕𝑥𝑗𝜕𝑥𝑘

𝜇𝑘

𝜕𝑢𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
         (5.5) 

 

VI. METHOD OF SOLUTION 
 

The SIMPLEC Solution Algorithm 

The SIMPLEC Algorithm follows the same steps as SIMPLE algorithm, with the difference that the momentum 

equations are manipulated so that the SIMPLEC velocity correction equations omit terms that are less 

significant than those omitted in SIMPLE.  

 

SIMPLEC Flow Chart 

 

 
Fig 6.1 SIMPLEC Algorithm flow chart 

VII. RESULTS AND DISCUSSION 
The results presented here were obtained by solving equations (5.1), (5.2), (5.3), (5.4) and (5.5) by SIMPLEC 

algorithm after discretization as shown in flow chart (6.1) and together with the boundary conditions gave the 

following  numerical solutions. The numerical results we have found were validated against the experimental 

data provided by Ampofo and Karayiannis (2003). This benchmark is at a Rayleigh number of 1.58 × 109. 
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Grid and Grid Convergence 
 

 
Fig 7.1 grid 80x80 

 

The grid shown in figure 7.1 above is the standard grid used in these validations. The computational grids are 

staggered and clustered towards the walls. 

 

 Grids are staggered so that the scalar variables like pressure, temperature, density and turbulent quantities are 

stored in the cell centers of the control volume whereas vector variables like velocity and momentum are located 

in the cell faces. All variables are calculated right up to the walls without using any wall function since the 𝑘 −
𝜔 𝑆𝑆𝑇 model would use its blending function to switch the model to the 𝑘 − 𝜔 model which is more accurate 

and more numerically stable in the near wall regions. On the wall surface, the boundary values for the velocity 

components and the turbulent kinetic energy are set to zero in conformity with no slip boundary condition. 

 
Fig 7.2    Mass imbalance profiles on an 80x80 grid 

 

The dimensionless temperatures of the cold and hot walls are 0 and 1 respectively.  

 

Firstly, we checked the solution for mesh convergence. This we did by carrying out a grid independence test. 

This was done by computing the numerical solution on successively finer grids. The difference in numerical 
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solution between the coarse (80x80) and finer (160x160) grid, was to be taken as the accuracy measure of the 

coarse grid. 

 

In this case, the 80x80 grid was refined by increasing the number of grid points to 160x160 for confirmation of 

grid independence. Figure 7.2 and Figure 7.3 show a comparison of the residual mass imbalance profiles for the 

flow generated on each of the grids.  The numerical implication is that as the mesh spacing or control volume 

size approached zero, the discretized equation solution matches the exact solution. 

 

 
Fig 7.3 Mass imbalance grid on a 160x160 grid 

 

Evidently, the results obtained on the 80x80 grid do not differ from those obtained on the 160x160  

grid layout. Therefore, we can conclude the discretization error has diminished to zero and the grid 

independence has been reached. 

 

Solution Convergence by SIMPLEC Method 
Convergence was monitored with residuals, whereby a decrease in residuals by three orders of magnitude was to 

indicate at least qualitative convergence whereby case residual plots would show when the residual values have 

reached the specified tolerance.  
 

A convergence of the root mean square residual of 1e-06 for energy and 1e-03 for turbulent kinetic energy, 

specific dissipation rate and 𝑥−, 𝑦 −and z – momentum equations, was sufficient for significant physical results, 

as shown in fig. 7.4. The residues had reduced to a sufficient degree.  

 

The solution was to be deemed to have converged when the convergence criterion for each variable was 

reached. The default criterion was that each residual was to be reduced to a value of less than 10−3, except the 

energy residual, for which the default criterion was 10−6. 

In this case too, under-relaxation was used to enable convergence except for density, energy and body forces. 

The values used ranged from 0.3 to 0.9. 

 

For SIMPLEC, the residual convergence criterion for each variable was achieved and the residual imbalance 

became negligible after 350 iterations in a duration of 1hr, 15min. 
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Fig 7.4 Scaled Residuals by SIMPLEC 

 

Validation of Results 

Verification and Validation to assess the accuracy and reliability of results in this numerical code was done 

against the experimental solutions obtained from Ampofo and Karayiannis (2003). 

 

Temperature Profiles 

 

 
Figure 7.5 Comparison of the Mean Temperature at y/H=0.5 
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From fig. 7.5, the mean temperature profiles show an almost uniform distribution in the enclosure core. This 

shows that in the enclosure core region, there is very little activity as the mean temperature is nearly uniform. 

The predicted temperatures by SIMPLEC show a minimum which is lower than the experimental values in the 

core of the cavity. This is due to a trace of the cold draft emanating from the opposite wall, which according to 

measurements, should have had time to totally mix while crossing over along the floor. Again this shows 

insufficient mixing with the laminar core. The SIMPLEC simulation yielded a temperature of 0.4 both at the 

center of the enclosure, and on the near wall profiles.  In the enclosure core region, there is very little activity; 

the mean temperature is nearly uniform. 

 

Turbulent Kinetic Energy profiles 

These are a profile of the mean kinetic energy per unit mass, which are associated with root mean square 

fluctuating velocities in a turbulent flow. In this study, the turbulent kinetic energy is produced by shear, friction 

and buoyancy, transferred by turbulence energy cascade and dissipated by viscous forces (or molecular 

viscosity) at the Kolmogorov scales in the confluence. Fig. 7.6 displays the measured turbulent kinetic energy 

on the mid-width plane and the corresponding profiles obtained with  SIMPLEC numerical simulations.  

 

 
Fig. 7.6 Comparison of the Turbulent Kinetic Energy at y/H=0.5 

 

Both the predicted and experimental profiles are asymmetrically distributed between the hot and cold walls and 

reach their maximum close to the hot wall given that turbulent kinetic energy varies with temperature gradients. 

The reason being shear stress, friction and buoyancy produces turbulence that causes an increase in fluctuating 

velocities near the hot surface. A comparison shows that the numerical prediction by SIMPLEC induced lower 

turbulence kinetic energy than the experimental results. In the core, at the middle section, there is very little 

activity and the turbulence level is very small.  The reason being there is low temperature gradient hence low 

buoyancy, less friction and shear stress that is why the turbulent kinetic energy falls to zero.   

 

Local Nusselt Number 

Fig. 7.7 shows the heat transfer rate along the hot wall expressed in terms of the ratio of the convective to the 

conductive heat transfer across the boundary layer (local Nusselt number distribution). The SIMPLEC method 

over predicts Nusselt Number with a difference of 18%,  
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Fig. 7.7 Comparison of Local Nusselt Number along the Hot wall 

 

on the lower half of the hot wall, then under-predicts it but weakly compared with the measured data on the 

upper part of the wall.  

The over prediction of the Nusselt number in the initial parts of the hot surface may be related to the local 

minimum of temperature and residual cold draft coming over from the cold surface hence insufficient mixing 

between the laminar and turbulent core, which induces the sharper temperature gradient as seen and increases 

the convective heat transfer coefficient as seen  in fig. 7.7. 

 

Mean Vertical Velocity  

Figure 7.8 shows the profiles for rate of change of vertical displacement of the fluid particles with time. The 

profiles are asymmetrical and with a peak near the heated surface.The rise is caused by the fluid gaining kinetic 

energy due to higher temperature gradient at the heated surface. The fall is due to (a) local minimum 

temperature (b) the cold drift coming over from cold wall. The two factors diminish the temperature gradient 

and make the kinetic energy in the fluid to dissipate. 

 

As seen in figure 7.8, there is good agreement between the experimental data and the predicted data in terms of 

the mean velocity. The peak value of velocity is particularly well captured by SIMPLEC method. In the 

enclosure core region, there is very little activity and hence the fluid velocity is very small. 

 

 
Fig. 7.8 Comparison of the vertical velocity 
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Mean Horizontal Velocity 

Figure 7.9 shows the profiles of the rate of change of horizontal displacement of the fluid with time.  

 
Fig. 7.9 Comparison of the Horizontal velocity 

 

The rise of velocities near the heated surface of the cavity is as a result of fluid gaining kinetic energy from the 

heated wall causes an increased convective heat transfer coefficient, while the drop of velocities after 0.04 from 

the hot wallis as a result  

 (a) local minimum temperature 

 (b) the cold drift coming over from the opposite cold wall. 

 

The two factors makes the energy in the fluid dissipate. All in all, there is good agreement between the 

experimental data and the predicted data in terms of the mean horizontal velocity, as in fig. 7.9 

 

VIII. CONCLUSION 
i) From the numerical data, the numerical method produced a solution which approached the exact 

solution by Ampofo and Karayiannis (2003) as the grid spacing reduced to zero. Further, the method is 

stable, the governing equations consistent, as evidenced by the damping errors as the numerical method 

proceeded and the initial data did not cause wild oscillations of divergence.Therefore using Lax's 

equivalence theorem, Lax and Richtmyer (1956), this code is valid, stable and consistent. 

ii) In this thesis, Both the experimental data and simulation using SIMPLEC return a non-dimensional 

temperature of 0.5 at the core of the cavity and almost zero towards the cold 

Therefore 

a) The results show that in an enclosure environment, the natural turbulence flow is responsible for 

temperature distribution. 

b) Temperature profiles are important for thermal comfort (including air velocity, temperature and 

humidity levels), efficiency of energy balance and the effectiveness of the ventilation system when 

modeling air flow in buildings.  
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