Advanced Intrusion Detection with DoubleGuard in Multitier Web Application
Environments

Dr. Samuel Asare*! & Dr. Nana Kofi Osei?

1(Senior Lecturer, Department of Mechanical Engineering), Kwame Nkrumah University of Science
and Technology, Kumasi, Ghana
2(Lecturer, Department of Mechanical Engineering), Kwame Nkrumah University of Science and
Technology, Kumasi, Ghana

ABSTRACT

Network attacks are increased in number and severity over the past few years, intrusion detection
system (IDS) is increasingly becoming a critical component to secure the network. Intrusion detection is the
process of monitoring and analyzing the events occurring in a computer system in order to detect signs of
security problems. Intrusion Detection Systems has the additional job of triggering alarms toward this security
problem and some of it automated in the role of triggering or doing an action on behalf of the network
administrator. The goal of intrusion detection system (IDS) is to provide another layer of defense against
malicious (or unauthorized) uses of computer systems by sensing a misuse or a breach of a security policy and
alerting operators to an ongoing attack.

In this paper, we have illustrated difficulties to implement IDS in multitier architecture. Since it is difficult to
implement multiple IDS, We have introduced a new protocol-Double Guard. Double Guard, is an IDS system
that models the network behavior of user sessions across both the front-end web server and the back-end
database. It monitors both the web and database request and identifies the attacks like SQL injection attack
which independent IDS cannot do.

Keywords: Intrusion Detection System, Anomaly Detection, Webserver, Attacks, SQLIA, Classification of
SQLIA.

l. INTRODUCTION
With the tremendous growth of internet and interconnections among computer systems, networks security is
becoming a major challenge. Security is the process of detecting and preventing to your system or/and computer
from unauthorized users. Detection helps you to determine whether or not someone attempted to break into your
system and if they were successful what they may have done. Whereas prevention measures help you to stop or
block unauthorized users, from accessing any part of your system.

There are various software available for security but they lack some degree of intelligence when it comes to
observing, recognizing and identifying attack signatures that may be present in traffic or in case if there is a
backdoor or hole in the infrastructure and that’s where intrusion detection comes in. IDS categorized into mainly
in three types on the basis of kind of activities, system, traffic or behaviour they monitor which is host-based,
network-based and application-based. Here we are focusing on network intrusion detection system. A network
Intrusion Detection System can be classified into two types: anomaly detection and misuse detection. Anomaly
detection first requires the IDS to define and characterize the correct and acceptable static form and dynamic
behaviour of the system, which can then be used to detect abnormal changes or anomalous behaviours. The
boundary between acceptable and anomalous forms of stored code and data is precisely definable. Behaviour
models are built by performing a statistical analysis on historical data or by using rule-based approaches to
specify behaviour patterns. An anomaly detector then compares actual usage patterns against established models
to identify abnormal events. Our detection approach belongs to anomaly detection, and we depend on a training
phase to build the correct model.

1. LITERATURE REVIEW AND RELATED WORK
This paper provides a literature review containing an intrusion detection system and network security related
topics that helps in research work and provide the needed conceptual framework for the development of the
proposed model.

K. Bai, H. Wang, and P. Liu, “Towards Database Firewalls,” Proc. Ann. IFIP WG 11.3 Working Conf.
Data and Applications Security (DBSec ’05), 2005.



Authentication based access control and integrity constraint are the major approaches applied in commercial
database systems to guarantee information and data integrity. However, due to operational mistakes, malicious
intent of insiders or identity fraud exploited by outsiders, data secured in a database can still be corrupted. Once
attacked, database systems using current survivability technologies cannot continue providing satisfactory
services according to differentiated information assurance requirements. In this paper, we present the innovative
idea of a database firewall, which can not only serve differentiated information assurance requirements in the
face of attacks, but also guarantee the availability and the integrity of data objects based on user requirements.
Our approach provides a new strategy of integrity-aware data access based on an on-the-fly iterative estimation
of the integrity level of data objects. Accordingly, a policy of transaction filtering will be dynamically enforced
to significantly slow down damage propagation with minimum availability loss.

B.I.A. Barry and H.A. Chan, “Syntax, and Semantics-Base Signature Database f or Hybrid Intrusion
Detection Systems,” Security and Comm. Networks, vol. 2, no. 6, pp. 457-475, 2009.

Signature-based intrusion detection systems (IDSs) have the advantages of producing a lower false alarm rate
and using less system resources compared to anomaly based systems. However, they are susceptible to
obfuscation used by attackers to introduce new variants of the attacks stored in the database. Some of the
disadvantages of signature based IDSs can be attributed to the fact that they are mostly purely syntactic and
ignore the semantics of the monitored systems. In this paper, we present the design and implementation of a
signature database that assists Specification-based IDS in a converged environment. Our design is novel in
terms of considering the semantics of the monitored protocols alongside their syntax. Our protocol semantics
awareness is based on the state transition analysis technique which models intrusions at a high level using state
transition diagrams. The signature database is hierarchically designed to insure a balance between ease of use
and fast retrieval in real time. The database prototype is tested against some implemented attacks and shows
promising efficiency.

D. Bates, A. Barth, and C. Jackson, “Regular Expressions Considered Harmful in Client-Side XSS
Filters,” Proc. 19th Int’l Conf. World Wide Web, 2010.

Cross-site scripting flaws have now surpassed buer over-ows as the world's most common publicly-reported
security vulnerability. In recent years, browser vendors and re-searchers have tried to develop client-side filters
to mitigate these attacks. We analyze the best existing filters them to be either unacceptably slow easily
circumvented. Worse, some of these filters could introduce vulnerabilities into sites that were previously bug-
free. We propose a new filter design that achieves both high performance and high precision by blocking scripts
after HTML parsing but before execution. Compared to previous approaches, our approach is faster, protects
against more vulnerabilities, and is harder for attackers to abuse. We have contributed an implementation of our
filter design to the WebKit open source rendering engine, and the filter is now enabled by default in the Google
Chrome browser

1. EXISTING SYSTEM

In this chapter we will see how the existing system behaves in multitier web application and how the IDS works
in multitier web architecture. In the existing system, Intrusion detection systems have been widely used to detect
known attacks by matching misused traffic patterns or signatures in a Multitier web services. Intrusion
Detection Systems (IDSs) examine network packets individually within both the web server and the database
system. Multitier Anomaly Detection (AD) system that generate model of network behavior for both web and
database network interactions is not much efficient. In such multitier architectures, the back-end database server
is often protected behind a firewall while the web servers are remotely accessible over the Internet.
Unfortunately, though they are protected from direct remote attacks, the back-end systems are susceptible to
attacks that use web requests as a means to exploit the back end. Generally, Web IDS and the database IDS can
detect abnormal network traffic sent to either of them. But when attack is done with normal traffic it is difficult
to find with such system.

For example if an attacker with non-admin privileged is login to a web server using normal access credentials,
an attacker can find a way to issue a privileged database query by exploiting the vulnerabilities in the web
server. Neither the web IDS nor database IDS would detect this type of attack. Since web IDS see only normal
traffic, according to web IDS username and password it will give access to the user as per its privilege level.
Database IDS see traffic only at database and as per database IDS if query is correct and does not contain any
malicious code it will them data or information for which it is requested. And hence existing system detect this
type because no one is going track the information flow after successful login at the web server and up to the
database transaction. This type of attack can be detected if the database IDS can identify that the privileged level
of request query is not associated or matched with the privileged level of user-access. And for that it is very
necessary mapped database query and response with the client request and response. But with the current
multithreaded web server architecture it is not possible to detect/profile such casual mapping between web



Perinola Journal , ISSN: 1342-0267 Volumel4, Issue 5, 2024

server traffic and database traffic since traffic cannot be clearly attributed to user sessions.

Ral
mm N

Rq2

Rt :

Rq3

Rs1

Fig 1: Existing System Architecture in Which Webserver Act as Front End and Database Server as Storage Back
End.

As the above figure shows all network traffic from normal user and attacker is received and intermixed at
the same web server. At the database side it is unable to tell which transaction corresponds to which client
request. As the communication between web server and database are not separated it is difficult to
understand the relationships among them. Other approaches have detected intrusions or vulnerabilities by
statically analyzing the source code or executables. Other dynamically tracks the information flow to
understand taint propagations and detect intrusions.

Disadvantages

1. With this existing system, we cannot detect attacks when the traffic is usual. And using multiple
IDS to detect anomaly is tedious.

2. The current multithreaded web server architecture, it is not feasible to detect or profile such causal
mapping between webs server traffic and DB server traffic since traffic cannot be clearly attributed
to user sessions.

3. This system is not efficient to provide security against threats like SQL injection attacks.

4. Other limitation indicates that multitier IDS are not efficient in terms of training sessions and
functionality coverage.

5. If an attacker compromises the web server other communication sessions can be hijacked and
affect.

6. Difficult to understand the relationships among database server and web server.

IV. PROPOSED SYSTEM

System Architecture

The propose system Double Guard is used to detect attacks in multitier web services. It is used to monitor
the network behavior across both the front end webserver and the backend database. For that we are
creating normative model of isolated user sessions that include both front end as well as back end network
transaction. To achieve this we are using lightweight virtualization technique to assign each users web
session to a dedicated container in an isolated virtual computing environment. This new container-based
web server architecture enables user to separate the different information flows by each session.

https://perinolajournal.com Page No:55



Client E.1 Client B2 Client B3

11 11 11

» RqglRsl Fq2 Rs2 Eq3 Rs3
I 1 11 1
VEI VE2 VE3
11 11 11
Tgql Trl Tqg2 Tr2 Tqg3 Tr3 L

1 11 11

Database Server

Client sends Database
the request sends reply J

.

System Architecture Where Webserver Instances Running in Containers and Assigns Each User
Sessions to a Dedicated Container.

This provides a means of tracking the information flow from the web server to the database server for each
session. This approach also does not require for user to analyze the source code or know the application logic.
Double Guard container architecture is based on Open VZ and lightweight virtualization. Virtualization
indicates that each client uses its own virtual web server i.e. each client is processed by a different web server.
Thus, highly secure system is provided as each client process is taken as separate session.

This system uses lightweight process containers, referred to ephemeral, disposable servers for client sessions. It
is possible to initialize thousands of containers on a single physical machine, and these virtualized containers
can be discarded, reverted, or quickly reinitialized to serve new sessions. A single physical web server runs
many containers, each one an exact copy of the original web server. This approach dynamically generates new
containers and recycles used ones. As a result, a single physical server can run continuously and serve all web
requests. However, from a logical perspective, each session is assigned to a dedicated web server and isolated
from other sessions. A container-ID is used to associate web request with its subsequent DB queries and
separate communication at the session level so that single user always deal with the same server which help us
to identify suspect behavior by both session and user.

At both the ends we put anomaly sensors whose function is to capture the traffic information from the network.
This traffic capture analysis modules are deployed at the host system and cannot be attacked directly since only
the virtualized containers are exposed to attackers. Mapping model can be used to detect abnormal behaviors.
Both the web requests and the database queries within each session should be in accordance with the model. If
there exists any request or query that violates the normality model within a session, then the session will be
treated as a possible attack.

V. MODULES DESCRIPTION
Proposed System is implemented by dividing the entire project into the following functional modules:

SQL Attack Module:

In this module, it analyzed the four attacks that generally takes place. These attacks are Hijack Future Session
Attack, Privilege Escalation Attack, Injection Attack and Direct DB Attack. In Privilege Escalation Attack, the
attacker login as a normal user and triggers admin queries so as to obtain an administrator’s data. Hijack Future
Session Attack is class of attacks is mainly aimed at the webserver side. An attacker usually takes over the
webserver and therefore hijacks all subsequent legitimate user sessions to launch Attacks. SQL injections do not
require compromising the webserver. Attackers can use existing vulnerabilities in the webserver logic to inject
the data or string content that contains the exploits and then use the webserver to relay these exploits to attack
the back-end database. In a Direct DB attack, an attacker can bypass the webserver or firewalls and connect



directly to the database. Proposed shows how these attacks take place. Initially the attacker passes a query and
login. It gets all the data in the database and retrieves it. If the same query he/she types in the backend Sql
server, can retrieve all information about the Admin database. So this way, it is shown that how an attack takes
place in a system.

Prevention Module:

After the server is activated, each client is initiated to use the service. Each client has its own webserver i.e.
multiple virtual webserver is created in a single system using same service. So each client access through a
virtual webserver, in this way proposed system can create multiple instance of server. Hence client can access a
service through the webserver which indicates the basic concept of Double guard architecture. Once client is
initiated, it tries to login to use the service. Here double guard depicts the prevention provided against the
attacker. The four attacks has been identified and shown how to overcome it. Here only authorized user can
login and use the blog. If an attacker login, he/she is identified and blocked. No further process can be done by
them. Due to the use of multiple webserver sometimes attacker get confused about the original server and
instance of the server.

Blog Creation Module:

In this module, It shows both Static and dynamic website. Initially the clients logon to his blog. After identifying
him as an authenticated user, he can visit the blog. The Home page is a dynamic site as it can be edited and
changed. The client can add his profile name or do any changes to his blog. After you click preview, you can see
the static site as all contents are static. Changes can not be made in that site. In the blog you can type the content
you want to post and do post. It is like all blog pages where user can post his blog. After all work has done the
user can logout from the site which guarantee his security.

Traffic Capture Analysis Module:

This module shows the traffic analysis captured between the client and webserver and also between the server
and the database. It provides the overall information regarding the total packet sent, length of the packet and
time of receiving of packets. It provides details about the destination IP, source IP and captured time of packet.
It also gives information about the Ethernet frames, the protocol used like TCP/IP etc and details about HTTP
protocol. It also provide graphical display of various OSI layers like Network layer, Application layer etc. That
is it provide visual scenario of the usage levels of each layer of OSI layer. Using this intruder can be detected as
packet size and its all information is available.

Intrusion Detection Module:

In this module, Intruder is detected and his activities have been noted. Generally, using the information about
the capture time of each packet, last sent packet and its length can be identified. So analyzing this overall
information an intruder can be detected. Usually an intruder login and then does all his activities. This is stored
in the database and can be used to detect the abnormal usage. Subsequent request can be noted and an intruder
can be identified. Based on the usage, a Network layer is depicted. It shows the graphical usage pattern.

VI. SYSTEM DEVELOPMENT

In this system we have implemented a prototype, Double guard which is used to detect attacks in a multitier
architecture. This is container-based web architecture that not only fosters the profiling of causal mapping, but it
also provides an isolation that prevents future session-hijacking. This is implemented using light weight
virtualization environment that ran many copies of the webserver instances in different containers so that each
one was isolated from the rest. Each user’s web session is assigned to a dedicated container and an isolated
virtual computing environment is created. For websites that do not permit content modification from users, there
is a direct causal relationship between the requests received by the front-end webserver and those generated for
the database back end.

For modeling a static website, we have used Static Model Building Algorithm. This algorithm takes the input
of training data set and builds the mapping model for static websites. For each unique HTTP request and
database query, the algorithm assigns a hash table entry, the key of the entry is the request or query itself, and
the value of the hash entry is AR for the request or AQ for the query, respectively. The algorithm generates the
mapping model by considering all three mapping patterns i.e. Deterministic Mapping, Empty Query Set, No
Matched Request pattern. This algorithm is implemented in the website traffic analysis of our project.

Static Model
Static website can build an accurate model of the mapping relationships between web requests and database
queries since the links are static and clicking on the same link always returns the same information. However,



some websites (e.g., blogs, forums) allow regular users with no administrative privileges to update the contents
of the server data. This creates tremendous challenges for IDS system training because the HTTP requests can
contain variables in the past parameters. For example, instead of one to one mapping, one web request to the
web server usually invokes number of SQL queries that can vary depending on type of the request and the state
of the system. Some requests will only retrieve data from the web server instead of invoking database queries,
meaning that no queries will be generated by these web requests. In other cases, one request will invoke number
of database queries. All communications from the clients to the database are separated by a session. Assign each
session with a unique session ID. Double Guard normalizes the variable values in both HTTP requests and
database queries, preserving the structures of the requests and queries. To achieve this Double Guard substitutes
the actual values of the variables with symbolic values.

VII. MAPPING RELATIONS

In Double guard classify the four possible mapping patterns. Since the request is at the origin of the data flows
treat each request as the mapping source. In other word, the mappings in the model are always in the form of
one request to a query set rm TO Qn.

Deterministic Mapping:

This is the most common and perfectly matched pattern. That is to Say that web request rm appears in all traffic
with the SQL queries set Qn. For any session in the testing phase with the request rm, the absence of a query set
Qn matching the request indicates a possible intrusion. On the other hand, if Qn is present in the session traffic
without the corresponding rm, this may also be the sign of an intrusion. In static websites this type of mapping
comprises the majority of cases since the same results should be returned for each time a user visits the same
link.

Empty Query Set:

In special cases, the SQL query set may be the empty set. This implies that the web request neither causes nor
generates any database queries. For example, when a web request for retrieving an image GIF file from the same
web server is made, a mapping relationship does not exist because only the web requests are observed. This type
of mapping is called rm assign empty. During the testing phase, we keep these web requests together in the set
EQS.

No Matched Request:

In some cases, the web server may periodically submit queries to the database server in order to conduct some
scheduled tasks, such as cron jobs for archiving or backup. This is not driven by any web request, similar to the
reverse case of the Empty Query Set mapping pattern. These queries cannot match up with any web requests,
and we keep these unmatched queries in a set NMR. During the testing phase, any query within set NMR is
considered legitimate. The size of NMR depends on web server logic, but it is typically small.

Non Deterministic Mapping:

The same web request may result in different SQL query sets based on input parameters or the status of the
webpage at the time the web request is received. In fact, these different SQL query sets do not appear randomly,
and there exists a candidate pool of query sets. Each time that the same type of web request arrives, it always
matches up with one (and only one) of the query sets in the pool. It is difficult to identify traffic that matches
this pattern. This happens only within dynamic websites, such as blogs or forum sites.

Static Model Algorithm:

In the case of a static website, the nondeterministic mapping does not exist as there are no available input
variables or states for static content. We can easily classify the traffic collected by sensors into three patterns in
order to build the mapping model as traffic is already separated by session, begin by iterating all of the sessions
from 1 to N.

Start

Input data of HTTP request whether it is query or request.

HTTP request i.e. Input is store in the Session.

The session entry will be set as input itself.

It send query or request to virtual server for validation task.

If attack is found then virtual server automatically terminated the STTP request.

Else attack is not found the STTP request is forwarded to the original server.

It shows the data.

Exit.

©CoOoNoGA~WNE



Some web requests that could appear separately are still present as unit. During the training phase, we treat them
as a single instance of web requests bundled together unless we observe a case when either of them appears
separately Our next step is to decide the other two mapping patterns by assembling a white list for static file
requests, including JPG,GIF, CSS, etc. HTTP requests for static files are placed in the EQS set. The remaining
requests are placed in REQ. If we cannot find any matched queries for them, they will also be placed in the EQS
set. In addition, all remaining queries in SQL will be considered as No Matched Request cases and placed into
NMR. In this algorithm that takes the input of training data set and builds the mapping model for static websites.
For each unique HTTP request and database query, the algorithm assigns a hash table entry, the key of the entry
is the request or query itself, and the value of the hash entry is AR for the request or AQ for the query,
respectively. The algorithm generates the mapping model by considering all three mapping patterns that would
happen in static websites.

VIII. PERFORMANCE ANALYSIS
We will implement a prototype of Double Guard using a webserver with a back-end DB. We also sets up two
testing websites, one static and the other dynamic. To evaluate the detection results for our system, we analyzed
four classes of attacks and measured the false positive rate for each of the two websites.

Software Requirement Specification

Problem Statement:

To develop a system for Detecting Intrusions that is capable of assisting best solutions to problem in
multitier web applications.

Input:

Network/traffic information across webserver between database servers.

Output:

Intrusion detection.

Hardware and software tools required for the system:

Content To Build | To Run The System
System
1.Computer-
Pentium 111 & 1.Computer-Pentium Il &
Hardware gb&\;ﬁ 256Mb above
Required R'AM 2.Min 256Mb RAM
3 Hard Disk: 3.Hard Disk: 40GB
40GB
1.Java Run Time
Environment
1.jdk1.6.0_07 | 2.Apache tomato
Software 2.Net Beans | 3.Wamp Server-win 32-
Required 6.9.1 171
3.My SQL 4. Jpcap.
5.Wincap
6.Internet explorer

IX. CONCLUSION

Proposed intrusion detection system that builds models of normal behavior for multitier web applications from
both front-end web (HTTP) requests and back-end database (SQL) queries have presented. In the previous
approach independent IDS is used to provide alerts unlike that now, Double Guard have used which form
container-based IDS with multiple input streams to produce alerts. Such correlation of input streams provides a
better characterization of the system for anomaly detection because the intrusion sensor has a more precise
normality model that detects a wider range of threats. This is achieved by isolating the flow of information from
each webserver session with a lightweight virtualization. Furthermore, it quantified the detection accuracy of
proposed approach when it attempted to model static and dynamic web requests with the back-end file system
and database queries.

It builds a well-correlated model for static websites, which proposed experiments proved to be effective at
detecting different types of attacks. It also showed that this held true for dynamic requests where both retrieval
of information and updates to the back-end database occur using the webserver front end. When proposed



prototype is deployed on a system that employed Apache webserver, a blog application, and a My SQL back
end, Double Guard was able to identify a wide range of attacks with minimal false positives which depended on
the size and coverage of the training sessions used.

It is my great pleasure in expressing sincere and deep gratitude towards my guide Asst.Prof.B.K.Patil for his
valuable suggestions, guidance and constant support throughout this work.

Note: If any content found the same and any references aren’t mentioned below, for that I am sincerely
apologies

X.
[1]

[2]
[3]
[4]
[5]

[6]
[7]

8]
[9]

REFERENCES

K.Bai, H. Wang, and P. Liu, “Towards Database Firewalls,” Proc. Ann. IFIP WG 11.3 Working Conf.
Data and Applications Security (DBSec “05), 2005.

B.ILA. Barry and H.A. Chan, “Syntax, and Semantics-Base Signature Database f or Hybrid Intrusion
Detection Systems,” Security and Comm. Networks, vol. 2, no. 6, pp. 457-475, 20009.

D. Bates, A. Barth, and C. Jackson, “Regular Expressions Considered Harmful in Client-Side XSS
Filters,” Proc. 19th Int™1 Conf. World Wide Web, 2010.

M.Christodorescu and S. Jha, “Static Analysis of Executables to Detect Malicious Patterns,” Proc.
Conf. USENIX Security Symp.,2003.

M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swaddler: An Approach for the Anomaly-Based
Detection of State Violations in Web Applications,” Proc. Int“ISymp. Recent Advances in Intrusion
Detection (RAID “07), 2007.

H. Debar, M. Dacier, and A. Wespi, “Towards a Taxonomy of Intrusion- Detection Systems,”
Computer Networks, vol. 31, no. 9,pp. 805-822, 1999.

Y. Hu and B. Panda, “A Data Mining Approach for Database Intrusion Detection,” Proc. ACM
Symp.Applied Computing (SAC), H. Haddad, A. Omicini, R.L. Wainwright, and L.M. Liebrock, eds.,
2004.

R. Ezumalai, G. Aghila, “Combinatorial Approach for Preventing SQL Injection Attacks”, 2009 IEEE
International Advance Computing Conference (IACC 2009) Patiala, India, 6-7 March 2009.

Asha. N, M. Varun Kumar, Vaidhyanathan. G of Anomaly Based Character Distribution Models in
the, “Preventing SQL Injection Attacks”, International Journal of Computer Applications (0975 —
8887) Volume 52— No0.13, August 2012 [10] Mehdi Kiani, Andrew Clark and George |,
“Evaluation ¢ Detection of SQL Injection Attacks”.The Third International Conference on Availability,
Reliability and Security,0-7695-31024/08, 2008 IEEE.

[10] DoubleGuard: Detecting Intrusions in Multitier Web Applications Meixing Le, Angelos Stavrou,

Member, IEEE, and Brent ByungHoon Kang, Member, IEEE.



