Enhancing Computational Performance through Load Balancing in Parallel and
Distributed Systems
Nguyen Van Tuan! and Pham Thi Hoa?

!Department of Information Systems, Hanoi University of Science and Technology, Hanoi, Vietnam
2Department of Computer Science, University of Da Nang, Da Nang, Vietnam

ABSTRACT
In computing, load balancing improves the distribution of workloads across multiple computing resources, such
as computers, a computer cluster, network links, central processing units, or disk drives.Load balancing aims to
optimize resource use, maximize throughput, minimize response time, and avoid overload of any single
resource.Parallel computingis a type of computationin which many calculations or the execution
of processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can
then be solved at the same time.

Keywords: Distributed Computing,Distributed Programming,parallel computing ,load balancing,client-server
load balancing .

l. INTRODUCTION

Using multiple components with load balancing instead of a single component may increase reliability and
availability through redundancy. Load balancing usually involves dedicated software or hardware, such as
a multilayer switch or a Domain Name System server process.

Load balancing differs from channel bonding in that load balancing divides traffic between network interfaces
on a network socket (OSI model layer 4) basis, while channel bonding implies a division of traffic between
physical interfaces at a lower level, either per packet (OSI model Layer 3) or on a data link (OSI modelLayer 2)
basis with a protocol like shortest path bridging.

Parallel computing

There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism.
Parallelism has long been employed in high-performance computing, but it's gaining broader interest due to the
physical constraints preventing frequency scaling.l?l As power consumption (and consequently heat generation)
by computers has become a concern in recent years,®! parallel computing has become the dominant paradigm
in computer architecture, mainly in the form of multi-core processors.™!

Parallel computing is closely related to concurrent computing—they are frequently used together, and often
conflated, though the two are distinct: it is possible to have parallelism without concurrency (such as bit-level
parallelism), and concurrency without parallelism (such as multitasking by time-sharing on a single-core
CPU).BI¢l In parallel computing, a computational task is typically broken down into several, often many, very
similar subtasks that can be processed independently and whose results are combined afterwards, upon
completion. In contrast, in concurrent computing, the various processes often do not address related tasks; when
they do, as is typical in distributed computing, the separate tasks may have a varied nature and often require
some inter-process communicationduring execution.

Parallel computers can be roughly classified according to the level at which the hardware supports parallelism,
with multi-core and multi-processor computers having multiple processing elements within a single machine,
while clusters, MPPs, and grids use multiple computers to work on the same task. Specialized parallel computer
architectures are sometimes used alongside traditional processors, for accelerating specific tasks.

In some cases parallelism is transparent to the programmer, such as in bit-level or instruction-level parallelism,
but explicitly parallel algorithms, particularly those that use concurrency, are more difficult to write than
sequential ones,!"! because concurrency introduces several new classes of potential software bugs, of which race
conditions are the most common. Communication and synchronization between the different subtasks are
typically some of the greatest obstacles to getting good parallel program performance.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Workload
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Disk_drives
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Multilayer_switch#Layer_4_Load_Balancer
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Channel_bonding
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Shortest_path_bridging
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Task_parallelism
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Frequency_scaling
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-2
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-3
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-View-Power-4
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Bit-level_parallelism
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-waza-5
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-waza-5
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Processing_element
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Massively_parallel_(computing)
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Parallel_algorithm
https://en.wikipedia.org/wiki/Parallel_computing#cite_note-7
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Synchronization_(computer_science)

Perinola Journal, ISSN: 1342-0267 Volumel4, Issue 2, 2024

‘:@7 st 53
E-l.'l:ﬂ.'ll
c@ Clhenl " @ l : :
foHd 1
b o0d Bylpnpes o .._'.'.
- @ T e Sanvard
Intermet ; o

Ghent -
| Saivwid
Chanl
Eilr
E) |:!' 'I|'::'
Cliant cxampie of a disiihited dient Ioad with 3 web senver fam

I B |

User

MediaWiki Application Servers Internet!

.
A 0ad Balancing

[

h

!ii.rr

Y |
r!i'!'g M“um!_.ErE

Backups

elastic1013-1019

Backups

Swift

Figure2: Userrequests to the Wikimedia Elasticsearch server cluster are routed via load balancing

Tables:

Internet-based services:One of the most commonly used applications of load balancing is to provide a
single Internet service from multiple servers, sometimes known as a server farm. Commonly load-balanced
systems include popular web sites, large Internet Relay Chat networks, high-bandwidth File Transfer
Protocol sites, Network News Transfer Protocol (NNTP) servers, Domain Name System (DNS) servers, and
databases.

Round-robin DNS: An alternate method of load balancing, which does not require a dedicated software or
hardware node, is called round robin DNS. In this technique, multiple IP addresses are associated with a
single domain name; clients are given IP in round robin fashion. IP is assigned to clients for a
time quantum.

DNS delegation : Another more effective technique for load-balancing using DNS is to
delegate www.example.org as a sub-domain whose zone is served by each of the same servers that are serving
the web site. This technique works particularly well where individual servers are spread geographically on
the Internet. For example:

one.example.org A 192.0.2.1
two.example.org A 203.0.113.2
www.example.org NS one.example.org
www.example.org NS two.example.org

https://perinolajournal.com Page No:70

https://en.wikipedia.org/wiki/Elasticsearch
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Server_farm
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Network_News_Transfer_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Round_robin_DNS
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Domain_name
https://en.wikipedia.org/wiki/Quantum

However, the zone file for www.example.org on each server is different such that each server resolves its own
IP Address as the A-record.fl On server one the zone file for www.example.org reports:

@inal92.0.2.1

On server two the same zone file contains:

This way, when a server is down, its DNS will not respond and the web service does not receive any traffic. If
the line to one server is congested, the unreliability of DNS ensures less HTTP traffic reaches that server.
Furthermore, the quickest DNS response to the resolver is nearly always the one from the network's closest
server, ensuring geo-sensitive load-balancing: A short TTL on the A-record helps to ensure traffic is quickly
diverted when a server goes down. Consideration must be given the possibility that this technique may cause
individual clients to switch between individual servers in mid-session.

Client-side random load balancing

Another approach to load balancing is to deliver a list of server IPs to the client, and then to have client
randomly select the IP from the list on each connection. This essentially relies on all clients generating similar
loads, and the Law of Large Numbers to achieve a reasonably flat load distribution across servers. It has been
claimed that client-side random load balancing tends to provide better load distribution than round-robin DNS;
this has been attributed to caching issues with round-robin DNS, that in case of large DNS caching servers, tend
to skew the distribution for round-robin DNS, while client-side random selection remains unaffected regardless
of DNS caching.

With this approach, the method of delivery of list of IPs to the client can vary, and may be implemented as a
DNS list (delivered to all the clients without any round-robin), or via hardcoding it to the list. If a "smart client"
is used, detecting that randomly selected server is down and connecting randomly again, it also provides fault
tolerance.

Server-side load balancers

For Internet services, server-side load balancer is usually a software program that is listening on the port where
external clients connect to access services. The load balancer forwards requests to one of the "backend" servers,
which usually replies to the load balancer. This allows the load balancer to reply to the client without the client
ever knowing about the internal separation of functions. It also prevents clients from contacting back-end
servers directly, which may have security benefits by hiding the structure of the internal network and preventing
attacks on the kernel's network stack or unrelated services running on other ports.

Some load balancers provide a mechanism for doing something special in the event that all backend servers are
unavailable. This might include forwarding to a backup load balancer, or displaying a message regarding the
outage.

It is also important that the load balancer itself does not become a single point of failure. Usually load balancers
are implemented in high-availability pairs which may also replicate session persistence data if required by the
specific application.

Scheduling algorithms

Numerous scheduling algorithms, also called load-balancing methods, are used by load balancers to determine
which back-end server to send a request to.[8l Simple algorithms include random choice or round robin. More
sophisticated load balancers may take additional factors into account, such as a server's reported load, least
response times, up/down status (determined by a monitoring poll of some kind), number of active connections,
geographic location, capabilities, or how much traffic it has recently been assigned.

Load balancer features

The fundamental feature of a load balancer is to be able to distribute incoming requests over a number of
backend servers in the cluster according to a scheduling algorithm. Most of the following features are vendor
specific:

Asymmetric load: A ratio can be manually assigned to cause some backend servers to get a greater share of the
workload than others. This is sometimes used as a crude way to account for some servers having more capacity
than others and may not always work as desired.

https://en.wikipedia.org/wiki/Load_balancing_(computing)#cite_note-2
https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/Law_of_Large_Numbers
https://en.wikipedia.org/wiki/TCP_and_UDP_port
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/High_availability
https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Load_balancing_(computing)#cite_note-6
https://en.wikipedia.org/wiki/Round-robin_scheduling

Perinola Journal, ISSN: 1342-0267

Volumel4, Issue 2, 2024

Priority activation: When the number of available servers drops below a certain number, or load gets too high,
standby servers can be brought online.

Figures and tables

Parallel Computing

Parallel computing is a form of computation in which many instructions

are carried out simultaneously
It operates on the principle that large problems can often be divided into
smaller ones, which are then solved concurrently (i.e. at the same time)

o [

Parallel computing

b e

Serial computing
There are several different forms of parallel computing: bit-level
parallelism, instruction-level parallelism, data parallelism, and task
parallelism.

FIT5174 Parallel & Distributed Systems Dr. Ronald Pose Lecture7-2013

Table 1:Difference between

Distributed
L3 8

Parallel

-
~

> /.‘ : /)
AN A SN
7«‘3}(

AN

o7\ »
&

Systems

Figure 4:Showing the difference between Paralell and Distributed systems

https://perinolajournal.com

Page No:72

Perinola Journal, ISSN: 1342-0267 Volumel4, Issue 2, 2024

Amdahl's Law

B e e T T e e
—

18 e
/ Parallel portion
16 / 50%
/ e 5%
—-— 90%
—— 05%

14

12

10

Speedup

- N = o ©® &N = @ © o
- ™

6

2

5

1.
1024
2048
4096
8192
16384
32768
65536

Number of processors

Figure 5:Graph Respresentation

1. CONCLUSION
Using multiple components with load balancing instead of a single component may increase reliability and
availability through redundancy. Load balancing usually involves dedicated software or hardware, such as
a multilayer switch or a Domain Name System server process. Priority activation: When the number of available
servers drops below a certain number, or load gets too high, standby servers can be brought online

1. REFERENCES
1. Andrews, Gregory R. (2000), Foundations of Multithreaded, Parallel, and Distributed Programming,
Addison-Wesley,ISBN 0-201-35752-6.
2. Gottlieb, Allan; Almasi, George S. (1989). Highly parallel computing. Redwood City, Calif.:
Benjamin/Cummings. ISBN 0-8053-0177-1.

https://perinolajournal.com Page No:73

https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Multilayer_switch#Layer_4_Load_Balancer
https://en.wikipedia.org/wiki/Domain_Name_System

