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ABSTRACT
Enormous work had been done on dual space of a sequence space. Also a massive corpus of work has been done
in convergences of different kinds of sequence and sequence spaces. An account of all these can be found out in
Cook,1, chapter 10 P.272-326 . Later on dual space was extended to the case of function spaces. In this concern
convergences has also been extended to the case of function spaces by some students of the school of mathematics.
The role of dual space of a function space was also observed by some of the researcher of this field in the study
of different discipline.

In this paper we have used the notion of dual space of a function space to study the behavior of convergences in
different suitably defined function spaces .That is we took the pain to establish some of the results on different
kind of convergences for function spaces using the notion of a dual space of a function space. Moreover in course
of extending some of the results we tried and got success in observing that if a result is true for a particular function
space then it also stands good for another some of the function spaces.

We also observed that the technique of establishing the results for function spaces are quite different from those
of the technique of establishing the results to the case of sequence space .As a matter of fact the main reason
behind it is the fact that in case of sequence space we had to deal with integers whereas in the case of function or
function space, we always play with the continuous variables.

The object of this paper is in fact to establish some of the results to show that parametric convergence implies
projective convergence in the dual space of a function space.
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INTRODUCTION

LINEAR SPACE: A structure of linear space on a set ‘V’ is defind by the two maps:

(@)(x,y)—=x+y of VXV into V and is said to be vector addition.(b) (a,x)—»ax of KxV into V and is said to be
scalar multiplication.

The above two maps are assumed to satisfy the following conditions:

() x+y=y+xforevery x,yinV .(ihx+ (y +2) = (x +y) + z for every x,y,z in V .(iii) There exits an element
0 in V such that x + 0 = 0 + x = x for every x in V.(iv)For every element x in V there exists an element denoted
by —xsuchthat x + (- X) = (-xX) + x = 0 for every x in V (v) a (x +y) = ax + ay for every a in K and all x,y in
V.(vi) (a + b) x = ax + bx for every a,b in K and all x in V.(vii) (ab) x = a (bx) for every a,b in Kand all x in V
.(viii) 1x = x for every x in V. Whenever all the above axioms are satisfied , we say that V isa linear space
(or a vector space) over field K.Now if K be the set of all real numbers then V is called a real linear space and
similarly if K stands for the set of all complex numbers then V is called a complex linear space . Here every
element of V is called a vector and every element of K is called a scalar. The zero vector 0 is unigue and called
the zero element or the origin in V.

SEQUENCE SPACE :A linear space whose elements are sequences is called a sequence space .Thus a set V of
sequences is a sequence space if , it contains the origin and for every x.y in V and for every scalar a, x +y and
ax arein V .

FUNCTION SPACE: A linear space whose elements are functions is called a function space. Thus a set V of
functions is a functions space if it contains the origin and for f, g in V and for every scalar o, f+ g and af are in
V . Here we consider only real functions of real variables.so a is taken to be real scalar so that our purpose is
served.

Definitions of some special function spaces are being given below making the use of which some results
have been established.

Moreover, the integration has been taken through in Lebesgue sense in the interval [ 0, o ) . We denote the set [0
,©0)byE.

T : It denotes the space of all convergent and bounded functions.



L. : It denotes the space of all functions f such that |f(x)| < K for almost all x > 0 where K is constant .

L: : It denotes the space of integrable functions, thatis L;is the space of all functions f such that fE [f(x)| dx <
e 0]

€ : It denotes the space of all functions continuous and bounded in [0, ). Clearly { <L

¢: Let E=[0. o). Let E! be asubset of E such that m(E?) is finite . Then the set of all functions f such that
f(x) is finite and bounded for almost all x in E1 and is zero in the compliment of E1, is defined to be the space of
finite functions and is denoted by ¢.

DUAL SPACE OF A FUNCTION SPACE:a" of a function space a is the space of all functions off such that

Je 1f(®)g(X)|dx < oo for every function g(x) in a. Also o isa function space .Also I"=L1; Lo"=L1; §
"= L1 ; Li" =L, (Wereferto Sharan, (1)).

PERFECT SPACE: A function space o is said to be perfect when o™ = a. Also L1, L., are perfect. [See Sharan
ONP

NORMAL FUNCTION SPACE:A function space o is called normal if for f is in a such that |g(x) | < |[f(x)|
impliesgisina[SeeSharan(1)].

By earlier work we can see that , every perfect space is normal .Thus it is clear that L., , L1 are normal function
space as these are perfect .[See Sharan, (1)].

REGULAR FUNCTION SPACE: If, with a definition of convergence and limit, every family f.(x) ina,
which has defined limit and also a t — limit , is such that these two limits are equal for almost all x >0 ,then a is
said to be regular function space under the defined convergence .

CONVERGENCE CLOSED FUNCTION SPACE: If, with a definition of convergence when parametric limit
of every convergent family in a function space a , is itself in a. .

PARAMETRIC CONVERGENT (or t —convergent) : Let fi(x) be a family of functions of x defined for all
tin[0, o), where t is a parameter . If to every e > 0, there corresponds a positive number T(e) , idependent
of x , such that , for almost all x >0 ,| fu(x) — f’(x) | < € ,forall t, t* > T (¢), then the family fi(x) is said to be
parametric convergent (t —cgt ). [See Sharan, (1)] .

PARAMETRIC LIMIT (t-limit) :If, to given any € > 0, there corresponds a number T(e ) , independent of
X, such that for almost all x > 0, |fi(X) — w(x)| < € for all t >T(e), then y(x) is called the parametric limit (t—
limit) of fy(x) and we write t-limit of fi(x) = y(x). Here we observe that any function equal to wy(x) , for almost
all x>0, is also a t-limit of fy(x).Therefore when we say that y(x) is the parametric limit (t-limit) of fi(x) , we
mean that y(x) is a t-limit of fy(x) and all functions equivalent to y(x) in [0,00) are t-limits of fi(x) .[ A function
6 is said to be equivalent to y(x) in [0,00) . when 8(x) = y(x) almost everywhere in [0,0) .

PROJECTIVE CONVERGENCE ( or af-convergence or p-convergence ) : Let o' 2 B and Fy(t) =

fE f.(x)g(x)dx ,Where f.(x) isin a and g(x) is in B then if Fy(t) tends to a definite finite limit as t — tends to oo

for every g(x) in B then we say that f.(x) is projective convergent ( or p-convergent) relative to §, or f.(x) is
ap-convergent and f;(x) is simply called p-convergent in a or a-convergent when B =o*.
“A necessary and sufficient condition for af- convergence of f.(x) is that to every g in B and to every € > 0 ,

there corresponds a positive number T(e,g) such that, for all t, t* > T(e,g) , |fE g(x){fi(x) —fa(x)}dx |< €”

PROJECTIVE LIMIT [ p—limit or ap - limit]: A function v , in o or outside o ,is called a projective limit
(p-limit) of f.(x) in a relative to B and we write y(x) = af - limit of f.(x) when (i) fE lgx)P(x)|dx <o for

every gin B, and (ii) l:rg fE f.(x)gx)dx = fE P(x)g(x)dx forevery ginf.

When B =a", vy is called a projective limit (p - limit of f,(x) ) in o and we write , y(x) = a — limit of f.(x) .
Different aff — limits of f.(x) can differ only in a set of x of measure zero. Hence when we say that y(x) is the
af — limits of f.(x) we mean that y(x) is an ap-limit of f (x) and other af-limit of f (x) are equivalent to y(x) .
It follows from the definitions that every af — limit belong to B".



STRONG PROJECTIVE CONVERGENCE (or strong p-convergence ):Leto” 2 B and fi(x) ,trunning
through [0,00) , isin o satisfies the condition that to every € > 0 and every p-bounded set U in B corresponds
a positive number T(g, U) such that

| [, 8@®){f(x) — fa(x)}dx|< € foreveryginUandall t, t'>T(e, U) then fi(x) is said to be strong projective
convergent (or strong p-convergent ) relative to B or strong af- convergent .When o= P then we say that fi(x)
is strong projective convergent (or strong p-convergent ) in o or strong o-convergent . Now letting U consists
of only one function, we see from the definition that strong af-convergence = af3-convergence.

STRONG PROJECTIVE LIMIT (or strong p-limit) :A function y(x) ,in or outside « , is called the strong
projective limit of f(x)in o relative to B and we show this fact by writing , y(x) = strong af-limit of fi(x) ,

when fE gx)P(x)dx <o forevery g in f and To every projective bounded set U in B , and to every € >

0, there corresponds a number T(e,U) such that for every g in U, | fE gX){f.(x) — Y(x)}dx | < € foreveryt

>T(e) . When o = B then we say that () is the strong projective limit of fi(x) in o and we write y(x) = a-
limit of fy(x) [ cooke, (1) P-305] Different af-limits of fi(x) can differ only in the sets of x of measure
zero.Hence when we say that y(x) is the strong off-limit of f(x) then we understand that y(x) is an strong af-
limit of fy(x) and other strong af-limits of fi(x) are equivalent to y(x).

SMOOTHLY PROJECTIVE CONVERGENCE [or p-convergent(S)]:Leta" 2 B, F(x,t)bein o and
g(x,r) bein B. Let yg(t,r) = fE F(x, t)g(x, r)dx .Now if to every € >0 and to every g(x,r) in  there corresponds
a positive number T(e,g) , independent of r ,such that for almost all 1 > 0 | yo(t,r) - wo(tir) |=
If; {(Fx,t) —F(x, t)} g(x, r)dx| <e,toeveryt,t'>T(e g), then we say that F(x,t) in o is smoothly projective
convergent (or p-convergent (S)) relative to B, or op-convergent (S) ; When B = o” then we say that F(x,t) is -
convergent (S) or a-smoothly convergent .

If there be no chance of confusion then we write Ft(X) instead of F(x,t) . Thatis F(x,t) = Ft(x) .Similarly g(x,r)
= gr(X) .

INTEGRABLE FUNCTION:The function f(x) is said to be integrable (L) or summable on the set E if the
integral fE f(x)dx exists and finite .That is fE f(x)dx <o .Since , if fis integrable (L) then [f] is integrable(L)

[See Natanson ,(1) chapter 5]
Thus clearly, f(x) belongs to Li. [See Natanson, (1) chapter 5, Rudin ,(1) chapter 10 , P-243]

CONVERGENT FUNCTION: A function f(x) which is (i) essentially bounded in [0 , o ), and (ii) tends to a
definite finite limit as x tends to oo is called a convergent function.

MEASURABLE SET: A bounded set E is said to be measurable if the outer and inner measures are equal .That
is when, m"E = m E (See Natanson ,(1), P-64)

MEASURE OF THE SET E: The common value of these two measures that is the common value of m,E and
m’E is called the measure of the set E is designated by mE. Hence mE = m,E= m'E

Since the above concept of defining measure of the set E is due to Lebesgue , so sometimes we call E
measurable in the Lebesgue sense ” or more briefly “measurable (L)” .

If the set E is non — measurable , it is impossible to take about its measure , and the symbol mE is meaningless In
particular , we consider all unbounded sets non measurable. [See Natanson ,(1) chapter 3 ]

PROJECTIVE BOUNDED SET (p-bounded set) If o> B and if |fE f(x)g(x)dx| < K(g) for every f inset
X in aand every g in B, where K(g) is a positive constant depending on g , then we say that the set X in a
is projective bounded (or p-bounded ) relative to B , or af-bounded . When B = o, we say that X is projective
bounded (p-bounded ) in o, or a-bounded . If o* © B and we take a set X in a to be the family fi(X) , with t
running through [0,00) , then we say that fi(x) is af-bounded if , | fE f, (x)g(x)dx| < K(g) for every t in [0,00)
and every g in f.

In this section we establish some of the results with reference of the notions given in the above section.
Theorem (2.3, 1): If a family of functions in a function space I'™ be parametric convergent then it is T
convergent.



Proof: Let ft be a family of functions in function space I'™". Also let f; be parametric convergent in I'™.Then to
every € >0 ,there exists a positive number T(e), independent of x , such that, for almost all x>0, |
fix) - fl(x) |[<e ...ooooiiinn. (2.11) forall t,t*> T(e) , Now let g(x) be any function in I'*. Hence g(x) must

be in L; .Thus fE [gX)|dx < o0 ...l (2.12) Now since we see that , |fE g(x){fi(x) — fa(x)}dx | <

Ji 180{f(x) — fa(x)}|dxV <€ [ |gx)|dx[By (2.11)] < € K(g) [By (2.12)] for all t,t'> T(e) every € >0
, where K(g) is a constant depending on g but independent of t in E = [0,00) .But then by the necessary and
sufficient conditions for f; to be I™T"-convergent .f; is I"*T"-convergent .Or simply f; is I I"-convergent .
Theorem (2.3, I1): In theorem (2.3,1) if T is perfect then the family f; of functions in T is T™T"-convergent
in the case f; is parametric convergent .

Proof : Since f;, a family of functions , is in I .But by hypothesis T is perfect Thus I'™ = T Hence f; isin
™ implies that f; isin T. Also f; is parametric convergent in I so ft is parametric convergent in T'. Hence then
to every € >0 , there exists a positive number T(¢) , independent of x , such that, for almost all x>0, | f(X)
-flx)|< e ... (2.13) for all t,t'> T(e), Now if g(x) be any function in I".Then g(x) must be in

LiHence [, |g(x)|dx = f0°°|g(x)|dx <o .......(2.14) [See Sharan , (1)] Now , since , | [ g(){fe(x) —

fa@)}dx| < [ 1g){fi(x) — fa(®)}|dx < € [ |g®)|dx [By (2.13)] <€ K(g)[By (2.14)] forall t, t' > T(e)
every € >0 ,where K(g) is a constant depending on g but independent of t in E =[0,00) .

But then by the necessary and sufficient conditions for a family ft of functions to be projective convergent we find
that fi is I""T"-convergent. Or simply ft is '™ I""-convergent.

Theorem (2.3, 111): Let ft be a family of functions in L which is parametric convergent then it is projective
convergent.

Proof : Let f; be a family of functions of x in L} defined for all tin [0,00) ,where t is parameter , By hypothesis
f. is parametric convergent then to every € >0, there exists a positive number T(e) , independent of x , such
that , for almost all x>0, | fi(x) - f'(x) |[< € ....... (2.15) forall t,t'> T(e), Now let g(x) be any function in
Li, . But the dual space of L. isalways contained in L;.Hence g(x) € L, implies g(x) must be in L; but

then, [, |g(x¥)|dx < o ...... (2.16) Where E =[0,00) .We have to show that f; is L% L -convergent That is
to show that to every g(x) in L, and to every € > 0, there corresponds a positive number T(g, g) such that ,

forall t,tt >T(eg) | [; g{fi(x) —fa(x)}dx| < € Now since |, | J; g{f(x) — fa@}dx| < |

Je 180{f(x) — fa()}ldx < € [, [g(x)|dx [By (2.15)] < € K(g) [By (2.16)] for all t,t'> T(e) every € >0
, where K(g) is a constant depending on g but independent of t in E =[0,00) .Thus fi(X) is L L. -convergent
. Or simply without any scope of confusion ft(x) is L - convergent.

However if L is perfect then Lt = L. and then the above theorem can be restated as

Theorem (2.3, 1V):Every parametric convergent family f(x) of functions of xin L. is L. - convergent.
Proof : We can prove this theorem the line of proof of the just above theorem .Clearly fi(x) isin L. and is
parametric convergent so it does not matter that whether fi(x) isin Lt or L. as L. is supposed to be perfect .
Again it follows direct from the definition of parametric convergent of fy(x) in any function space o whether if
a =L, thattoevery € >0, there corresponds a positive number T(e) , independent of x such that , for almost
all x > 0.|fu(x)-fl(x)|<e€ .......... 2.17)

Forallt, t'> T(e), Now in order to prove that fi(x)is L. L%, - convergent.We need a function g(x) in L%, so
as before in the previous theorem (2.3, 1) g(x) in L}, implies g(x) isin Li because L, is the dual space of L.
.Hence Ly, =L:

Thus g(x) € Ly, = g(x) is in L1 .So again we shall have that fE lg(x)|dx <oo............ (2.18)
Now with theorem help of [(2.17) and (2.18)] we can see that | [ g(®){f.(x) —fa(x)}dx| < |

Ji 1800{f(x) — fa(®)}ldx< € [, |g(x)|dx < e K(g) forall t,t'> T(e) every ¢ >0 ,where K(g) isa
constant depending on g but independent of theorem parameter t in E = [0,0) .Thus fy(X) iS L. L -
convergent . Or ft(x) is L.-convergent.

Theorem (2.3, V): In ™ parametric convergent implies {™ £ - convergent.

Proof : Let fi(x) be a family of functions of x in ™ defined for all t in [0,00), where t is a parameter . We
now suppose that the family f; is parametric convergent but then , by definition , to every € >0, there exists a
positive number T(e) , independent of x such that , for almost all x > 0.|fu(X) - fl(x) | <€ ....... (2.19) forall
t,tt> T(e), Let g(x) be any function in " then g(x) will get itself into theorem space of integrable functions ,

that is g(x) will be such that fE [g(x)|dx < oo ...... (2.20) Now on the basis of [(2.19) and (2.20)] it is easy to

see that | [ g(){fe() — fu(O}dx| < | [ 1800{fe(x) — fu(®)}ldx< € [ |g(x)|dx [ By (2.19)] < € K(9)
forall t,t'> T(e) every e >0 , where K(g) is a constant depending on g but independent of theorem



parameter t in E = [0,00) But then by a necessary and sufficient condition parametric convergent family of
functions fi(x) defined for all x is ¢™ " - convergent .
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