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ABSTRACT 
Enormous work had been done on dual space of a sequence space. Also a massive corpus of work has been done 

in convergences of different kinds of sequence and sequence spaces. An account of all these can be found out in 

Cook,1 , chapter 10  P.272-326 . Later on dual space was extended to the case of function spaces. In this concern 

convergences has also been extended to the case of function spaces by some students of the school of mathematics. 

The role of dual space of a function space was also observed by some of the researcher of this field in the study 

of different discipline. 

 

In this paper we have used the notion of dual space of a function space to study the behavior of convergences in 

different suitably defined function spaces .That is we took the pain to establish some of the results on different 

kind of convergences for function spaces using the notion of a dual space of a function space. Moreover in course 

of extending some of the results we tried and got success in observing that if a result is true for a particular function 

space then it also stands good for another some of the function spaces. 

 

We also observed that the technique of establishing the results for function spaces are quite different from those 

of the technique of establishing the results to the case of sequence space .As a matter of fact the main reason 

behind it is the fact that in case of sequence space we had to deal with integers whereas in the case of function or 

function space, we always play with the continuous variables.  

 

The object of this paper is in fact to establish some of the results to show that parametric convergence implies 

projective convergence in the dual space of a function space. 

 

KEYWORDS: Linear Space, Sequence Space, Function Space, Dual Function Space, Perfect Function Space, 

Normal Function Space, Regular Function Space, Convergence Closed Function Space, Parametric Convergent, 

Parametric Limit, Projective Convergence Projective Limit. 

 

INTRODUCTION  
LINEAR SPACE: A structure of linear space on a set ‘V’ is defind by the two maps: 

(a)(x,y)→x+y of  V×V  into V and is said to be vector addition.(b) (a,x)→ax of K×V into V and is said to be 

scalar multiplication. 

The above two maps are assumed to satisfy the following conditions: 

(i) x + y = y + x for every x,y in V .(ii)x + (y + z) = (x + y) + z for every x,y,z in V .(iii)There exits an element  

0 in V such that x + 0 = 0 + x = x for every x in V.(iv)For every element x in V there exists an element denoted 

by  – x such that  x + (- x) = (-x) + x = 0 for every x in V (v) a (x + y) = ax + ay for every a in K and all x,y in 

V.(vi) (a + b) x = ax + bx for every a,b in K and all x in V.(vii) (ab) x = a (bx) for every a,b in K and all x in V 

.(viii) 1x = x for every x in V. Whenever all the above axioms are satisfied , we say that  V  is a     linear space 

(or a vector space) over field  K.Now if   K  be the set of all real numbers then  V  is called a real linear space and 

similarly if   K  stands for the set of all complex numbers then  V  is called a complex linear space . Here every 

element of V is called a vector and every element of K is called a scalar. The zero vector 0 is unique and called 

the zero element or the origin in V. 

 

SEQUENCE  SPACE :A  linear space whose elements are sequences is called a sequence space .Thus a set V of 

sequences is a sequence space if , it contains the origin and for every x.y in  V  and for every scalar  α , x + y and  

αx  are in  V  . 

FUNCTION SPACE: A linear space whose elements are functions is called a function space. Thus a set V of 

functions is a functions space if it contains the origin and for f , g in V and for every scalar α , f + g and αf are in 

V . Here we consider only real functions of real variables.so α is taken to be real scalar so that our purpose is 

served. 

 

Definitions of some special function spaces are being given below making the use of which some results 

have been established. 

Moreover, the integration has been taken through in Lebesgue sense in the interval [ 0 , ∞ ) . We denote the set [0 

, ∞) by E . 

𝚪 :  It denotes the space of all convergent and bounded functions. 
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L∞ : It denotes the space of all functions f such  that |𝐟(𝐱)| < K for almost all x ≥ 0 where K is constant . 

L1 : It denotes the space of  integrable  functions , that is  L1 is the space of all functions f such that ∫ |𝐟(𝐱)| 𝐝𝐱 
𝐄

< 

∞ 
ζ : It denotes the space of all functions continuous and bounded in [0 , ∞).   Clearly      ζ  < L∞ 

𝛟 :   Let   E = [0.  ∞ ) .  Let E1 be a subset of E such that m(E1) is finite . Then the set of all functions f such that 

f(x) is finite and bounded for almost all x in E1 and is zero in the compliment of E1, is defined to be the space of 

finite functions and is denoted by 𝛟. 

 

DUAL  SPACE OF A FUNCTION SPACE:α*  of a function space  α is the  space of all functions off  such that  

∫ |𝐟(𝐱)𝐠(𝐱)|𝐝𝐱
𝐄

  <  ∞ for every function  g(x)  in  α . Also  α*  is a function  space .Also  𝚪* = L1 ;  L∞
* = L1 ;  ζ 

* =  L1  ; L1
*  = L∞   ( We refer to Sharan , (1) ) . 

 

PERFECT SPACE: A function space α is said to be perfect when α** = α. Also L1, L∞ are perfect.  [See Sharan 

,  (1) ] . 

 

NORMAL FUNCTION SPACE:A function space  α  is called normal if for f is in α such that |g(x) | ≤  |f(x)|  

impliesgisinα[SeeSharan(1)].                                                                                                                                                                                                                                                                                                         

By earlier work we can see that , every perfect space is normal .Thus it is clear that L∞ , L1 are normal function 

space as these are perfect .[See Sharan , (1)].             

 

REGULAR  FUNCTION  SPACE: If , with a definition of convergence  and limit , every family   ft(x)  in α , 

which has defined limit and also a t – limit , is such that these two limits are equal for almost all  x ≥ 0 ,then α is 

said to be regular function space under the defined convergence .                                                

 

CONVERGENCE CLOSED FUNCTION SPACE:  If , with a definition of convergence when parametric limit 

of every convergent family in a function space α , is itself in α .        

 

PARAMETRIC  CONVERGENT (or t – convergent ) : Let  ft(x)  be a family of functions of x defined for all 

t in [0 , ∞ ) , where  t  is a parameter . If  to every  ϵ > 0 , there corresponds a positive number T(ϵ) , idependent 

of x , such that , for almost all x ≥ 0 ,| ft(x) – ft
1(x) | ≤  ϵ ,for all t , t1  ≥  T (ϵ) , then the family ft(x) is said to be 

parametric  convergent (t – cgt ). [See Sharan , (1)] .  

 

PARAMETRIC  LIMIT  (t – limit ) :If , to given any  ϵ > 0 , there corresponds a number T(ϵ ) , independent of  

x , such that for almost all x ≥ 0 , |ft(x) – ψ(x)| ≤  ϵ for all   t  ≥ T(ϵ) , then  ψ(x) is called the parametric limit (t–

limit ) of  ft(x) and we write  t–limit of  ft(x) = ψ(x). Here we observe that any function equal to  ψ(x) , for almost 

all x ≥ 0 , is also a t–limit of   ft(x).Therefore  when we say that ψ(x) is the parametric limit (t-limit) of  ft(x) , we 

mean that ψ(x) is a t-limit of  ft(x) and all functions equivalent to ψ(x) in [0,∞) are t-limits of  ft(x) .[ A function 

θ is said to be equivalent to ψ(x) in [0,∞) . when θ(x) = ψ(x) almost  everywhere in [0,∞) .  

 

PROJECTIVE  CONVERGENCE  ( or αβ-convergence  or   p-convergence ) :  Let α* ⊇ β and Fg(t) = 

∫ 𝐟𝐭(𝐱)𝐠(𝐱)
𝐄

dx ,Where  ft(x) is in α and  g(x) is in β then if  Fg(t)  tends to a definite finite limit as t – tends to ∞ 

for every  g(x) in β then we say that ft(x) is projective convergent ( or p-convergent) relative to β , or   ft(x) is 

αβ-convergent and ft(x) is simply called p-convergent in α or α-convergent when   β = α* . 

  “A necessary and sufficient condition for αβ- convergence of  ft(x) is that to every g in β and to every ϵ > 0 , 

there corresponds a positive number T(ϵ,g )  such that , for all t , t1 ≥ T(ϵ,g) , |∫ 𝐠(𝐱){𝐟𝐭(𝐱) −
𝐄

𝐟𝐭𝟏(𝐱)}𝐝𝐱 | ≤  ϵ.” 

 

PROJECTIVE  LIMIT [ p – limit  or  αβ - limit ] : A function ψ , in α or outside  α  ,is called a projective limit  

(p-limit ) of   ft(x) in α relative to β and we write  ψ(x) = αβ - limit of  ft(x) when (i) ∫ |𝐠(𝐱)𝛙(𝐱)|𝐝𝐱
𝑬

 < ∞  for 

every g in β , and (ii) 𝐥𝐢𝐦
𝒕→∞

∫ 𝐟𝐭(𝐱)𝐠(𝐱)
𝐄

𝐝𝐱  = ∫ 𝛙(𝐱)𝐠(𝐱)
𝐄

dx  for every g in β

 

When β = α* , ψ is called a projective limit (p - limit of ft(x) ) in  α  and we write , ψ(x) = α – limit of ft(x) .                                                                                  

Different αβ – limits of  ft(x)  can differ only in a set of x of measure zero. Hence when we say that ψ(x) is the 

αβ – limits of  ft(x) we mean that ψ(x) is an αβ-limit of  ft(x) and other αβ-limit of  ft(x) are equivalent to ψ(x) . 

It follows from the definitions that every αβ – limit belong to β*. 
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STRONG  PROJECTIVE  CONVERGENCE (or strong p-convergence ):Let α* ⊇  β  and ft(x)   , t running 

through  [0,∞) , is in  α  satisfies the condition that to every 𝜖 > 0 and every p-bounded set  U  in  β  corresponds 

a positive number  T(ϵ, U) such that  

 | ∫ 𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}𝐝𝐱 
𝐄

| ≤  𝝐  for every g in U and all t , t1 ≥ T(𝜖, 𝑈) then  ft(x)  is said to be strong projective 

convergent (or strong p-convergent )  relative to  β  or  strong  αβ- convergent .When α*= β then we say that  ft(x) 

is strong projective convergent (or strong  p-convergent ) in α  or strong  α-convergent . Now letting U consists 

of only one function, we see from the definition that strong αβ-convergence  ⇒  αβ-convergence.  

 

STRONG  PROJECTIVE  LIMIT (or strong p-limit ) :A function  ψ(x) ,in or outside  α  , is called the strong 

projective limit of  ft(x) in  α  relative to  β  and we show this fact by writing   , ψ(x) = strong  αβ-limit of  ft(x) , 

when  ∫ 𝐠(𝐱)ψ(𝐱)𝐝𝐱
𝐄

 < ∞ for every  g  in  β  and  To every projective bounded set  U  in  β  , and to every  𝜖 > 

0 , there corresponds a number T(𝜖,U) such that for every  g  in  U , | ∫ 𝐠(𝐱){𝐟𝐭(𝐱) − ψ(𝐱)}𝐝𝐱 
𝐄

| ≤  𝝐 for every t 

≥ T(𝜖) . When  α* =  β then we say that  ψ(x)  is the strong projective limit of  ft(x)  in  α and we write ψ(x) = α-

limit of  ft(x) [ cooke, (1) P-305] Different  αβ-limits of  ft(x)  can differ only in the sets of  x of measure  

zero.Hence when we say that  ψ(x) is the strong  αβ-limit of  ft(x)  then we understand that  ψ(x) is an strong  αβ-

limit of  ft(x)  and other strong  αβ-limits  of  ft(x)  are equivalent to ψ(x).  

 

SMOOTHLY  PROJECTIVE  CONVERGENCE  [or  p-convergent(S) ] : Let α* ⊇  β  , F(x,t) be in  α  and  

g(x,r)  be in  β . Let ψg(t,r) = ∫ 𝐅(𝐱, 𝐭)𝐠(𝐱, 𝐫)𝐝𝐱
𝐄

 .Now if to every  𝜖 > 0 and to every  g(x,r) in β there corresponds 

a positive number T(𝜖,g) , independent of  r ,such that for almost all  r ≥ 0 | ψg(t,r)  - ψg(t1,r) |= 

|∫ {𝐅(𝐱, 𝐭) − 𝐅(𝐱, 𝐭𝟏)}
𝐄

𝐠(𝐱, 𝐫)𝐝𝐱 |  ≤ 𝜖 , to every t , t1 ≥ T(ϵ, g) , then we say that F(x,t) in  α  is smoothly projective 

convergent (or p-convergent (S)) relative to β, or αβ-convergent (S) ; When β = α* then we say that F(x,t) is  α-

convergent (S) or  α-smoothly convergent .  

If there be no chance of confusion then we write Ft(x) instead of   𝐅(𝐱, 𝐭) . That is 𝐅(𝐱, 𝐭) ≡ Ft(x) .Similarly g(x,r)  

≡  gr(x) . 

 

INTEGRABLE FUNCTION:The function f(x) is said to be integrable (L)  or summable on the set E if the 

integral ∫ 𝐟(𝐱)𝐝𝐱
𝐄

  exists and finite .That is  ∫ 𝐟(𝐱)𝐝𝐱
𝐄

 < ∞ .Since , if f is integrable (L) then |f| is integrable(L) 

[See Natanson ,(1) chapter 5] 

Thus clearly, f(x) belongs to L1. [See Natanson, (1) chapter 5 , Rudin ,(1) chapter 10 , P-243]  

 

CONVERGENT FUNCTION: A function f(x) which is (i) essentially bounded in [0 , ∞ ), and (ii) tends to a 

definite finite limit  as x tends to ∞ is called  a convergent function. 

 

MEASURABLE SET: A bounded set E is said to be measurable if the outer and inner measures are equal .That 

is when, m*E = 𝐦∗E (See Natanson ,(1), P-64) 

 

MEASURE OF THE SET E: The common value of these two measures that is the common value of m∗E and 

m*E is called the measure of the set E is designated by mE. Hence   mE =  𝐦∗E =  m*E  

Since the above concept of defining measure of  the set E is due to Lebesgue , so sometimes we call  E  “ 

measurable in the Lebesgue sense ” or more briefly  “measurable (L)” . 

 

If the set E is non – measurable , it is impossible to take about its measure , and the symbol mE is meaningless In 

particular , we consider all unbounded sets  non measurable. [See Natanson ,(1) chapter 3 ] 

 

PROJECTIVE  BOUNDED  SET (p-bounded set) If  α*⊃ β  and if   |∫ 𝐟(𝐱)𝐠(𝐱)𝐝𝐱
𝐄

| ≤ K(g) for every  f  in set  

X  in  α and every  g  in  β , where K(g) is a positive constant depending on  g  , then we say that the set  X  in  α  

is projective bounded (or p-bounded ) relative to β , or αβ-bounded . When β = α* , we say that  X  is projective 

bounded (p-bounded ) in α , or  α-bounded . If α* ⊃  β  and we take a set X in α to be the family  ft(x) , with  t  

running through [0,∞) , then we say that  ft(x)  is αβ-bounded if  ,    | ∫ 𝐟𝐭𝐄
(𝐱)𝐠(𝐱)𝐝𝐱| ≤ K(g) for every t in  [0,∞) 

and every  g  in  β. 

 

In this section we establish some of the results with reference of the notions given in the above section. 

Theorem (2.3, I): If a family of functions in a function space   Γ** be parametric convergent then it is   Γ**Γ*-

convergent. 
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Proof: Let ft be a family of functions in function space Γ**. Also let ft be parametric convergent in Γ**.Then to 

every  𝜖  > 0  ,there exists a positive number  T(𝜖) , independent of  x  , such that , for almost all  x ≥ 0 ,          | 

ft(x) – ft
1(x) | ≤ 𝝐     ………….(2.11) for all  t , t1 ≥  T(𝜖) , Now let g(x) be any function in Γ* . Hence g(x) must 

be in L1 .Thus   ∫ |𝐠(𝐱)|𝐝𝐱
𝐄

  <  ∞     ………….(2.12) Now since we see that , | ∫ 𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}𝐝𝐱
𝐄

 | ≤ 

∫ |𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}|𝐝𝐱
𝐄

V ≤ 𝝐 ∫ |𝐠(𝐱)|𝐝𝐱
𝐄

[By (2.11)] ≤ 𝝐 K(g) [By (2.12)] for all  t , t1 ≥  T(𝜖) every  𝜖  > 0  

, where  K(g)  is a constant depending on  g  but independent of  t  in E = [0,∞) .But then by the necessary and 

sufficient conditions  for  ft  to be Γ**Γ*-convergent .ft  is Γ**Γ*-convergent .Or simply  ft  is Γ** Γ*-convergent . 

Theorem (2.3, II): In theorem (2.3,I) if  Γ is perfect then the family  ft  of functions  in  Γ  is   Γ**Γ*-convergent 

in the case ft is parametric convergent . 

Proof : Since ft , a family of functions , is in Γ** .But by hypothesis  Γ  is perfect  Thus  Γ** =  Γ Hence  ft  is in  

Γ** implies that  ft  is in  Γ. Also ft is parametric convergent in Γ** so ft  is parametric convergent in  Γ . Hence then 

to every  𝜖 > 0  , there exists a positive number  T(𝜖) , independent of  x  , such that , for almost all  x ≥ 0 , | ft(x) 

– ft
1(x) | ≤  𝝐     ……….(2.13) for all  t , t1 ≥  T(𝜖) , Now if  g(x) be any function in Γ*.Then  g(x) must be in 

L1.Hence  ∫ |𝐠(𝐱)|𝐝𝐱
𝐄

  = ∫ |𝐠(𝐱)|𝐝𝐱
∞

𝟎
 < ∞ ……..(2.14) [See Sharan  , (1)] Now , since , | ∫ 𝐠(𝐱){𝐟𝐭(𝐱) −

𝐄

𝐟𝐭𝟏(𝐱)}𝐝𝐱 |  ≤ ∫ |𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}|𝐝𝐱
𝐄

 ≤  𝝐 ∫ |𝐠(𝐱)|𝐝𝐱
𝐄

  [By (2.13)] ≤ 𝝐 K(g)[By (2.14)] for all  t , t1 ≥  T(𝜖) 

every  𝜖  > 0  , where  K(g)  is a constant depending on  g  but independent of  t  in E = [0,∞) . 

But then by the necessary and sufficient conditions for a family ft of functions to be projective convergent we find 

that ft is Γ**Γ*-convergent. Or simply ft is Γ** Γ*-convergent. 

Theorem (2.3, III): Let ft be a family of functions in  L∞
∗∗

  which is parametric convergent then it is projective 

convergent. 

Proof : Let  ft  be a family of functions of  x  in  L∞
∗∗

  defined for all  t in [0,∞) ,where t is parameter , By hypothesis  

ft  is parametric convergent then to every  𝜖  > 0 , there exists a positive number T(𝜖) , independent of  x  , such 

that , for almost all  x ≥ 0 , | ft(x) – ft
1(x) | ≤ 𝝐 …….(2.15)  for all  t , t1 ≥  T(𝜖) , Now let g(x) be any function in  

L∞
∗

  . But the dual space of  L∞  is always contained in  L1 .Hence  g(x)  ∈  L∞
∗

  implies  g(x)  must be in  L1  but 

then , ∫ |𝐠(𝐱)|𝐝𝐱
𝐄

  <  ∞ ……(2.16) Where  E = [0,∞) .We have to show that   ft  is  L∞
∗∗

  L∞
∗ -convergent  ,That is 

to show that to every  g(x)  in L∞
∗

  and to every  𝜖  > 0 , there corresponds a positive number  T(ϵ, g) such that  , 

for all  t , t1  ≥ T(ϵ, g) | ∫ 𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}𝐝𝐱 |
𝐄

 ≤  𝛜  Now since  , | ∫ 𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}𝐝𝐱 |
𝐄

 ≤  | 

∫ |𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}|𝐝𝐱 
𝐄

 ≤  𝝐 ∫ |𝐠(𝐱)|𝐝𝐱
𝐄

 [By (2.15)] ≤ 𝝐 K(g) [By (2.16)] for all  t , t1 ≥  T(𝜖) every  𝜖  > 0  

, where  K(g)  is a constant depending on  g  but independent of  t  in E = [0,∞) .Thus  ft(x)  is  L∞
∗∗

  L∞
∗ -convergent 

. Or simply without any scope of confusion ft(x) is  L∞
∗∗

 - convergent. 

However if L∞ is perfect then  L∞
∗∗

 = L∞ and then the above theorem can be restated as  

Theorem (2.3 , IV):Every parametric convergent family  ft(x)  of functions of  x in  L∞  is  L∞  - convergent .  

Proof : We can prove this theorem the line of proof of the just above theorem .Clearly  ft(x)  is in  L∞  and is 

parametric convergent so it does not matter that whether  ft(x)  is in  L∞
∗∗

  or  L∞ as L∞  is supposed  to be perfect . 

Again it follows direct from the definition of parametric convergent of   ft(x) in any function space  α  whether if  

α = L∞  that to every  𝜖  > 0 , there corresponds a positive number  T(ϵ) , independent of x such that  , for almost 

all  x  ≥  0. | ft(x) – ft
1(x) | ≤ 𝝐   ……….(2.17) 

For all t , t1 ≥  T(𝜖) , Now in order to prove that  ft(x) is  L∞ L∞
∗

  - convergent . We need a function g(x)  in L∞
∗

  so 

as before in the previous theorem  (2.3 , III) g(x) in  L∞
∗  implies  g(x) is in  L1 because  L1 is the dual space of  L∞ 

. Hence   L∞
∗

 = L1  

Thus g(x)  ∈  L∞
∗  ⇒ g(x) is in L1 .So again we shall have that  ∫ |𝐠(𝐱)|𝐝𝐱

𝐄
  < ∞ ………… (2.18) 

Now with theorem help of  [(2.17) and (2.18)] we can see that   | ∫ 𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}𝐝𝐱 |
𝐄

 ≤ | 

∫ |𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}|𝐝𝐱 
𝐄

≤  𝝐 ∫ |𝐠(𝐱)|𝐝𝐱
𝐄

  ≤  𝝐 K(g) for all  t , t1 ≥  T(𝜖) every  𝜖  > 0  , where  K(g)  is a 

constant depending on  g  but independent of  theorem parameter  t  in  E  = [0,∞) .Thus  ft(x)  is  L∞  L∞
∗

 - 

convergent . Or ft(x) is L∞-convergent. 

Theorem (2.3, V): In ζ** parametric convergent implies ζ** ζ* - convergent. 

Proof : Let  ft(x) be a family of functions of  x  in  ζ**  defined for all  t  in [0,∞), where  t  is a parameter . We 

now suppose that the family  ft  is parametric convergent but then , by definition , to every  𝜖  > 0 , there exists a 

positive number  T(ϵ) , independent of x such that  , for almost all  x  ≥  0 .| ft(x) – ft
1(x) | ≤ 𝝐  …….(2.19)  for all  

t , t1 ≥  T(𝜖) , Let g(x) be any function in  ζ*  then g(x) will get itself into theorem space of integrable functions , 

that is  g(x)  will be such that  ∫ |𝐠(𝐱)|𝐝𝐱
𝐄

  <  ∞ ……(2.20) Now on the basis of  [(2.19) and (2.20)]  it is easy to 

see that  | ∫ 𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}𝐝𝐱 |
𝐄

 ≤  | ∫ |𝐠(𝐱){𝐟𝐭(𝐱) − 𝐟𝐭𝟏(𝐱)}|𝐝𝐱 
𝐄

≤  𝝐 ∫ |𝐠(𝐱)|𝐝𝐱
𝐄

 [ By (2.19)] ≤ 𝝐 K(g) 

for all  t , t1 ≥  T(𝜖) every  𝜖  > 0  , where  K(g)  is a constant depending on  g  but independent of  theorem 
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parameter  t  in  E  = [0,∞) But then by a necessary and sufficient condition parametric convergent family of 

functions  ft(x) defined for all  x  is   ζ** ζ* - convergent . 
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